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Abstract

Building autonomous agents to interact with the world lies at the core of artificial

intelligence (AI). This thesis introduces “language agents”, a new category of agents

that utilize large language models (LLMs) to reason to act, marking a departure from

traditional agents via extensive rule design or learning. It is developed in three parts:

Part I motivates the necessity for language agents by introducing a new set of AI

problems and benchmarks based on interaction with large-scale, real-world computer

environments, such as the Internet or code interfaces. These “digital automation”

tasks present tremendous value for alleviating tedious labor and improving our lives,

yet pose significant challenges for prior agent or LLM methods in decision-making

over open-ended natural language and long horizon, calling for new methodologies.

Part II lays the methodological foundation for language agents, where the key idea

is to apply LLM reasoning for versatile and generalizable agent acting and planning,

which also augments LLM reasoning to be more grounded and deliberate via external

feedback and internal control. We show language agents can solve a diversity of

language and agent tasks (especially digital automation tasks proposed in Part I),

with notable improvements over prior LLM-based methods and traditional agents.

Part III consolidates insights from Parts I and II and outlines a principled framework

for language agents. The framework provides modular abstractions to organize various

LLM-based methods as agents, to understand their gaps from human cognition, and

to inspire and develop new methods towards general-purpose autonomous agents.

From foundational empirical tasks and methods to a unifying conceptual framework,

this thesis establishes the study of language agents as a distinct and rigorously defined

field at the frontier of AI research.

3



Acknowledgements

Usually it starts with the advisor, but as a prelude I want to first thank my friend

Kexin Yi. Back in 2018, when I was a visiting undergrad at MIT trying computer

vision but unsure what to do or where to go next, he opened a webpage and said

something like: “You should check out this Karthik guy, I heard he’s quite nice, and

this text game thing is very interesting. Also, though Princeton AI isn’t very strong

now, they are recruiting great young people. I’d go there if I’m younger.” Wow.

It turns out this Karthik guy is quite nice, and this text game thing is indeed very

interesting. When I entered Princeton graduate school in 2019 but still unsure what to

do or where to go next, I reached him and said, “This language model thing (GPT-2)

looks quite promising and should just solve text games?” He’s like, “Sure.” This led

to a paper called CALM, a PhD thesis on language agents, and five wonderful years

of research and life with the best advisor possible and the best man in my wedding

being this Karthik guy. (But Zork1 is still unsolved!) Thanks for taking a chance

on a new grad not admitted by you and without any experience in your research

fields, for supporting him when guidance was needed and trusting him when freedom

was needed, and for all the walks in random Princeton locations and Salesforce Park

talking random things and grand vision. It feels great.

It also turns out Princeton recruits great people, though not all young. In late

2018, I was thrilled to learn that Tom Griffith moved to Princeton, but we didn’t get to

work together until five years later. Although we only worked together on three papers

with very sparse meetings, they turned out to be some of my best work. Thanks

for pointing me to Newell, Simon, General Problem Solver, Cognitive Architectures,

the great classes in my junior years, and showing me what the most professional

professor looks like. On the younger side, thanks to Danqi, the third member of my

general exam committee. Although we haven’t worked together, you set a practical

and complementary tone for the NLP group and recruited great students who became

4



my great friends, and I enjoyed our fond chats in random places: IAS, Abu Dhabi,

and Hawley, PA. I also want to thank the other members of my thesis committee,

Ben, Sanjeev, and Tatsu, for their great help on my job talk, as well as Jia and Olga,

one or two of whom admitted me to Princeton and made everything possible.

Besides Princeton professors (and Tatsu), I also want to thank other great mentors:

Jiajun for starting my research career, Jun-Yan for the work ethic and passion that

still inspire me today, Josh for being the first academic grandmaster figure in my life

and deeply influencing my research, other undergrad mentors and teachers (Denny,

Lihong, Chongjie, Ran) for your continuing care till today, Matthew for unlocking my

career with Jericho, and Yuan for the solid and constant support during the ReAct and

ToT time (including the free Google meals that made my life much easier in London).

In addition, thanks to Bill, Antonio, Liz, Tomer, Kevin, Chuang, Mo, Christos, Sham,

and all other senior researchers who have helped me along the way.

Princeton recruits not just great professors, but also talented, kind, and diverse

students who played a principle component in my happiness in the last five years.

I want to thank my NLP friends (Alex, Ameet, Austin, Ben, Carlos, Dan, Howard,

Jane, Jens, Jimmy, John, Mengzhou, Michael, Ofir, Runzhe, Sadhika, Tianyu, Vishvak,

Zexuan, among more), basketball friends (Chengyu, Yuxiao, Kexin, Sinong, Ryan,

among more), roommate friends (Xiaoqi, Fan, Kehan, Tianshu), non-of-the-above

friends (Ted, Allen, Gong, Chen, Xindi, among more), and non-Princeton friends too

many to count. You know who you are. In particular, thank my mentees (John, Ben,

Michael, Noah, among more) for giving me a chance to positively impact others’ lives.

Usually it ends with family, and let me finally respect the norms. Doing a PhD

abroad has been a lonely journey (special thanks to COVID), with countless video

chats on WeChat. But the love and support have not faded as a result of distance,

they evolved and strengthened. I want to thank my parents (Guoping and Feng), wife

(Sixuan), and many other family members. I hope to have made you all proud.

5



To my family.

6



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1 Introduction 21

1.1 Prelude: Text Games . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.1.1 CALM: Applying language models for agents . . . . . . . . . . 24

1.1.2 Hash: Re-thinking semantics in text games and agents . . . . 25

1.2 Approach and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 27

I Benchmarks 28

2 WebShop: Benchmarking Agents via Web Interaction 29

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 The WebShop Environment . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.1 Task formulation . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.2 Environment implementation . . . . . . . . . . . . . . . . . . 37

2.3.3 Research challenges . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7



2.4.1 Rule baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.2 Imitation learning (IL) . . . . . . . . . . . . . . . . . . . . . . 40

2.4.3 Reinforcement learning (RL) . . . . . . . . . . . . . . . . . . . 42

2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.1 Setup and task verification . . . . . . . . . . . . . . . . . . . . 42

2.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5.4 Zero-shot sim-to-real transfer . . . . . . . . . . . . . . . . . . 47

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 InterCode: Benchmarking Agents via Code Interaction 50

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 The InterCode Benchmark . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.2 Construction pipeline . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.3 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.1 Base models comparison . . . . . . . . . . . . . . . . . . . . . 62

3.5.2 Prompting strategy comparison . . . . . . . . . . . . . . . . . 63

3.6 Towards More Challenging and Practical Code Interaction . . . . . . 67

3.6.1 USACO: Towards Olympiad-level programming . . . . . . . . 67

3.6.2 SWE-bench: Towards solving real-world GitHub issues . . . . 68

3.6.3 DevBench: Towards comprehensive software development . . . 69

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8



II Methods 71

4 ReAct: Building Agents that Reason to Act 72

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 ReAct: Synergizing Reasoning and Acting . . . . . . . . . . . . . . . 78

4.4 Experiments: Knowledge-Intensive Reasoning . . . . . . . . . . . . . 80

4.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.3 Results and observations . . . . . . . . . . . . . . . . . . . . . 82

4.5 Experiments: Sequential Decision Making . . . . . . . . . . . . . . . 86

4.6 Incorporating Reasoning and Acting with Learning . . . . . . . . . . 89

4.6.1 Reflexion: Reasoning to Learn . . . . . . . . . . . . . . . . . . 90

4.6.2 FireAct: Fine-tuning to Learn . . . . . . . . . . . . . . . . . . 91

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5 Tree of Thoughts: Building Agents that Reason to Plan 93

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4 Tree of Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5.1 Game of 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.5.2 Creative writing . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.5.3 Mini crosswords . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9



III Framework 112

6 CoALA: Cognitive Architectures for Language Agents 113

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 Background: From Strings to Symbolic AGI . . . . . . . . . . . . . . 116

6.2.1 Production systems for string manipulation . . . . . . . . . . 116

6.2.2 Control flow: From strings to algorithms . . . . . . . . . . . . 117

6.2.3 Cognitive architectures: From algorithms to agents . . . . . . 118

6.3 Connections between Language Models and Production Systems . . . 121

6.3.1 Language models as probabilistic production systems . . . . . 121

6.3.2 Prompt engineering as control flow . . . . . . . . . . . . . . . 122

6.3.3 Towards cognitive language agents . . . . . . . . . . . . . . . 123

6.4 Cognitive Architectures for Language Agents . . . . . . . . . . . . . . 125

6.4.1 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.4.2 Grounding actions . . . . . . . . . . . . . . . . . . . . . . . . 129

6.4.3 Retrieval actions . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.4.4 Reasoning actions . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.4.5 Learning actions . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.4.6 Decision making . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.5 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.6 Actionable Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7 Conclusion 149

7.1 Ongoing and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 149

Bibliography 152

10



List of Tables

2.1 Actions in WebShop. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Left: Score breakdown. Right: average, maximum, and minimum

number of states visited, items checks, and searches in a trajectory. . 45

2.3 Two example trajectories (showing only actions) from the human and

the IL+RL model. We omit some human actions from instruction 2 for

space and truncate the item names for readability. Red denotes options

and blue denotes attributes. . . . . . . . . . . . . . . . . . . . . . . . 45

2.4 Task performance with the Choice oracle. first and last refer to the

first and last search queries found in human demonstrations, respectively. 46

2.5 Zero-shot sim-to-real transfer to Amazon and eBay over 100 test in-

structions. The Score / SR (Success Rate) column indicates the overall

performance. The remaining breakdown are in Score. . . . . . . . . . 48

3.1 Rundown of the three environments developed using the InterCode

framework. The numbers in parentheses refer to the number of task

instances adopted from each dataset. Each environment is defined in

under 200 lines of code total. . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Success Rate for single vs. multi turn evaluation on InterCode-SQL.

Query difficulty is adopted from Spider [364]. Best metrics are in bold. 61

11



3.3 Success Rate across file systems for single vs. multi-turn evaluation on

InterCode-Bash. To evaluate models’ ability to interact with different

task settings, we evaluate disjoint sets of Bash instructions across four

different file systems. Best metrics are in bold. . . . . . . . . . . . . 62

3.4 Comparison of different prompting strategies across the entire InterCode-

SQL and InterCode-Bash datasets using gpt-3.5-turbo as the base

model. Turns refers to the average number of turns taken for a single

task episode. For Try Again and ReAct, the max number of turns

n = 10. The highest Success Rate, fewest Turns, and lowest Error %

are highlighted per dataset since they reflect more accuracy and efficient

task solving. Best metrics are in bold. . . . . . . . . . . . . . . . . . 64

4.1 PaLM-540B Results on HotpotQA and Fever. . . . . . . . . . . . . . 83

4.2 Types of success and failure modes of ReAct and CoT on HotpotQA,

as well as their percentages in randomly selected examples studied by

human. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3 AlfWorld task-specific success rates (%). BUTLER and BUTLERg

results are from Table 4 of [278]. All methods use greedy decoding,

except that BUTLER uses beam search. . . . . . . . . . . . . . . . . 88

4.4 Score and success rate (SR) on Webshop. IL/IL+RL taken from [352]. 88

5.1 Task overview. Input, output, thought examples are in blue. . . . . . 103

5.2 Game of 24 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3 Mini Crosswords results. . . . . . . . . . . . . . . . . . . . . . . . . . 108

12



6.1 Conceptual diagram illustrating how prompting methods manipulate

the input string before generating completions. Q = question, A =

answer, O = observation, C = critique, and ∼∼∼▸ denotes sampling from

a stochastic production. These pre-processing manipulations – which

can employ other models such as vision-language models (VLMs), or

even the LLM itself – can be seen as productions. Prompting methods

thus define a sequence of productions. . . . . . . . . . . . . . . . . . . 123

6.2 Some recent language agents cast into the CoALA framework. . . . . 136

13



List of Figures

1.1 This thesis proposes a new way to build and benchmark AI agents. . 21

1.2 Sample gameplay from Zork1 along with action sets generated by two

variants of CALM. The game recognizes a vocabulary size of 697,

resulting in more than 6974 ≈ 200 billion potential 4-word actions.

‘move rug ’ is the optimal action to take here and is generated by our

method as a candidate. . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 Normalized score across 28 games. . . . . . . . . . . . . . . . . . . . . 24

1.4 (a): Sample gameplay from Zork I, and (b) hash replaces observation

and action texts by their string hash values. . . . . . . . . . . . . . . 25

2.1 Typical benchmarks for agents that perceive or generate language

usually feature synthetic text and environments, small action spaces,

and short-horizon tasks. . . . . . . . . . . . . . . . . . . . . . . . . . 30

14



2.2 The WebShop environment. A: An example task trajectory in HTML

mode, where a user can (1) search a query in a search page, (2) click

a product item in a results page, (3) choose a color option in a item

page, (4) check item-detail pages and go back to the item page, and

(5) finally buy the product to end the episode and receive a reward

r ∈ [0, 1] (§2.3.2). B: the results page in simple mode for agent

training and evaluation. The blue text indicates clickable actions and

bold text indicates an action selected by the agent. C: The product

notation used in §2.3 with corresponding examples from the product in

A. The attributes Yatt are hidden from the task performer. . . . . . 31

2.3 Item rank in search results when the instruction is directly used as

search query. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Architecture of our choice-based imitation learning (IL) model. The

image I is passed to a ResNet to obtain the image representation.

The instruction text u is passed to a transformer (initialized with

BERT) to obtain the text representations. The concatenated bi-modal

representations are fused with the action representations using the

Attention Fusion Layer. The resulting fused-action representations are

mean-pooled and reduced by an MLP layer to a scalar value S(o, a)

denoting the logit value of the action choose[khaki]. . . . . . . . . . 40

2.5 Task scores and Success Rate (%) for our models on the test split of

WebShop over 3 trials. LP Search uses a pre-trained BART model to

generate the search query and IL w/o LP Search uses the rule-based

heuristic. LP Choice uses pre-trained BERT weights to initialize the

choice action model and IL w/o LP Choice trains a Transformer from

scratch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

15



3.1 Overview of InterCode. Setting up an interactive code environment

with InterCode requires a Dockerfile, dataset, reward function definition,

and a small amount of subclass implementation. The interactive loop

between agent and environment closely mirrors real world software

development processes. While InterCode task performance is gener-

ally quantified as a binary 0/1 completion score, InterCode allows for

the design of more complex evaluation criteria that can incorporate

execution output and the effects of interaction on the state space. . . 52

3.2 Overview of Prompting Strategies adjusted for evaluation on InterCode.

The ”Try Again” termination constraint is conditioned on reward = 1,

while ReAct [360] and Plan & Solve [316] are determined by the agent

itself. This is because the purpose of the ”Try Again” method is to

explore how capable agents are at error correction from feedback, while

the other two are more concerned with the overall success of general

problem-solving strategies. . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 Growth in Success Rate with increase in number of interaction turns

across models configured with Try Again prompting strategy for

InterCode-Bash and SQL tasks. . . . . . . . . . . . . . . . . . . . . . 64

3.4 GPT-4’s interaction trajectory for a binary exploitation CTF task. This

requires proficiency in Bash and Python, among additional knowledge

and reasoning. Orange text and arrows highlight the feedback that

the model attends to in generating the next action. In last step, agent

submits flag. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

16



3.5 Example USACO problem description, formatting instructions, and

illustration (problem id: 1275 bronze leaders). Solving this problem

requires a combination of grounded reasoning about the concept of

leaders, creative thinking to precisely count different cases of leader

pairs, and algorithmic reasoning to perform these ad hoc operations in

linear time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6 SWE-bench sources task instances from real-world Python repositories

by connecting GitHub issues to merged pull request solutions that

resolve related tests. Provided with the issue text and a codebase

snapshot, models generate a patch that is evaluated against real tests. 68

3.7 DevBench features multiple stages of software development, including

software design, environment setup, implementation, and testing (both

acceptance and unit testing). . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 (1) Comparison of 4 prompting methods, (a) Standard, (b) Chain-

of-thought (CoT, Reason Only), (c) Act-only, and (d) ReAct (Rea-

son+Act), solving a HotpotQA [351] question. (2) Comparison of (a)

Act-only and (b) ReAct prompting to solve an AlfWorld [278] game.

In both domains, we omit in-context examples in the prompt, and only

show task solving trajectories generated by the model (Act, Thought)

and the environment (Obs). . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 PaLM-540B prompting results with respect to number of CoT-SC

samples used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3 Scaling results for prompting and finetuning on HotPotQA with ReAct

(ours) and baselines. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

17

https://usaco.org/index.php?page=viewproblem2&cpid=1275


4.4 Reflexion works on decision-making (ALFWorld [278]), programming

(HumanEval [46]), and reasoning (HotpotQA [351]) tasks. Compared

to traditional reinforcement learning via back-propagation of scalar

feedback, Reflexion can be seen as “verbal reinforcement learning” via

reflective reasoning of more general and flexible language feedback. . . 90

4.5 Illustration of FireAct. (a) During fine-tuning, a large LM (e.g.,

GPT-4) generates task-solving trajectories based on questions from

different datasets and prompts from different methods. The successful

trajectories are then converted into the ReAct format to fine-tune a

smaller LM. (b) During inference, the fine-tuned LM could operate

without few-shot prompting, and could implicitly select an prompting

method to complete a ReAct trajectory with flexible lengths, adapting

to different question complexities. For example, a simple question could

be solved using only one thought-action-observation round, without

using tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1 Schematic illustrating various approaches to problem solving with LLMs.

Each rectangle box represents a thought, which is a coherent language

sequence that serves as an intermediate step toward problem solving.

See concrete examples of how thoughts are generated, evaluated, and

searched in Figures 5.2,5.4,5.6. . . . . . . . . . . . . . . . . . . . . . 95

5.2 ToT in a game of 24. The LM is prompted for (a) thought generation

and (b) valuation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3 Game of 24 (a) scale analysis & (b) error analysis. . . . . . . . . . . . 105

5.4 A step of deliberate search in a randomly picked Creative Writing task.

Given the input, the LM samples 5 different plans, then votes 5 times to

decide which plan is best. The majority choice is used to consequently

write the output passage with the same sample-vote procedure. . . . 108

18



5.5 Creative Writing results. . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.6 In Mini Crosswords, (a) how thoughts are proposed and aggregated

in a priority queue for depth-first search (DFS), and (b) how a state

is evaluated based on the possibility of filling in each remaining word

clue, and pruned if any remaining clue is deemed not possible to fill by

the LM. Then DFS backtracks to the parent state and explore the next

promising thought for clue. . . . . . . . . . . . . . . . . . . . . . . . . 109

6.1 Different uses of large language models (LLMs). A: In natural lan-

guage processing (NLP), an LLM takes text as input and outputs

text. B: Language agents [7, 120] place the LLM in a direct feedback

loop with the external environment by transforming observations into

text and using the LLM to choose actions. C: Cognitive language

agents [360, 276, 314] additionally use the LLM to manage the agent’s

internal state via processes such as learning and reasoning. In this work,

we propose a blueprint to structure such agents. . . . . . . . . . . . . 115

6.2 Cognitive architectures augment a production system with sensory

groundings, long-term memory, and a decision procedure for selecting

actions. A: The Soar architecture, reproduced with permission from

[149]. B: Soar’s decision procedure uses productions to select and

implement actions. These actions may be internal (such as modifying

the agent’s memory) or external (such as a motor command). . . . . 119
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6.3 From language models to language agents. A: Basic structure of an

LLM call. Prompt construction selects a template and populates it

with variables from working memory. After calling the LLM, the string

output is parsed into an action space and executed. An LLM call may

result in one or more actions – for example, returning an answer, calling

a function, or issuing motor commands. B: Prompt chaining techniques

such as Self-Critique [323] or Selection-Inference [61] use a pre-defined

sequence of LLM calls to generate an output. C: Language agents such

as Inner Monologue [120] and ReAct [360] instead use an interactive

feedback loop with the external environment. Vision-language models

(VLMs) can be used to translate perceptual data into text for the LLM

to process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4 Cognitive architectures for language agents (CoALA). A: CoALA de-

fines a set of interacting modules and processes. The decision pro-

cedure executes the agent’s source code. This source code consists of

procedures to interact with the LLM (prompt templates and parsers),

internal memories (retrieval and learning), and the external environment

(grounding). B: Temporally, the agent’s decision procedure executes a

decision cycle in a loop with the external environment. During each

cycle, the agent uses retrieval and reasoning to plan by proposing

and evaluating candidate learning or grounding actions. The best

action is then selected and executed. An observation may be made,

and the cycle begins again. . . . . . . . . . . . . . . . . . . . . . . . . 125

6.5 Agents’ action spaces can be divided into internal memory accesses

and external interactions with the world. Reasoning and retrieval

actions are used to support planning. . . . . . . . . . . . . . . . . . 128
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Chapter 1

Introduction

Building autonomous agents to interact with various environments is the core problem

of artificial intelligence (AI) [266]. At a high level, this thesis proposes a fundamentally

new kind of agent, and a fundamentally new kind of environment (Figure 1.1):

Autonomous agents to interact with the world

2

action

feedback

Agent Environment

Rule-based agents: manual design 

Learning-based agents: trial-and-error 

Language agents: reasoning to act

Interact with humans / physical world 

Interact with games / simulation 

Interact with digital world (e.g., Internet)

Figure 1.1: This thesis proposes a new way to build and benchmark AI agents.

• Existing agents either mainly follow domain-specific rules to act (rule-based

agents, such as DeepBlue [38], Eliza [272], or Shaky the robot [229]) or

mainly train on domain-specific data to act (learning-based agents, such as

AlphaGo [281], Atari DQN [206], or ADR for hand manipulation [8]). This

thesis introduces language agents that leverage language models to reason

to act, which alleviates the intensive domain-specific efforts needed to build

traditional agents, with few-shot generalization across various domains. This
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represents a major step toward the goal of building general-purpose autonomous

agents.

• Existing agents either interact with humans or the physical world (practical but

not scalable) or interact with games or simulations (scalable but not practical).

This thesis introduces digital automation, a new kind of task where agents

interact with large-scale real-world digital environments, such as the Internet.

This provides new challenges for agents to make decision over open-ended actions

and long horizon, as well as tremendous opportunities to alleviate our digital

labor and discover new knowledge.

What is wrong with traditional agents and environments? What is the definition

of “language agents” given traditional rule-based or learning-based agents might also

perceive and act in language? Why do we have to move to large-scale real-world digital

environments to make further progress, instead of using traditional agent testbeds like

games? I will briefly use the domain of text adventure games to illustrate these points

and motivate the rest of the thesis.

1.1 Prelude: Text Games

Text adventure games [106] such as Zork1 (Figure 1.4 (a)) have been one of the earliest

domains for developing agents that receive textual observations and issue textual

actions. In such games, agents receive sparse scalar rewards upon major progress

(such as moving the rug, opening the trap door, and entering the underground), and

aim to achieve high rewards.

A key challenge of such text games is the heterogeneous, combinatorial, yet

semantic action space (Figure 1.2): unlike chess or Atari with a small and fixed

action space, there is a different set of valid actions at each step of the text game

that are semantically meaningful to change the game state (Figure 1.2). If the agent
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Observation: You are in the living room. There is a doorway to the east, a wooden
door with strange gothic lettering to the west, which appears to be nailed shut, a
trophy case, and a large oriental rug in the center of the room. You are carrying:
A brass lantern . . .

Random Actions: close door, north a, eat troll with egg, egg troll, . . .
CALM (n-gram): enter room, leave room, open door, close door, . . .
CALM (GPT-2): east, turn on lantern, move rug, unlock case with key, . . .

Next Observation: With a great effort, the rug is moved to one side of the room,
revealing the dusty cover of a closed trap door...

Figure 1.2: Sample gameplay from Zork1 along with action sets generated by two
variants of CALM. The game recognizes a vocabulary size of 697, resulting in more
than 6974 ≈ 200 billion potential 4-word actions. ‘move rug ’ is the optimal action to
take here and is generated by our method as a candidate.

samples a random action in the space of language, the chance of the action being

“valid” is near zero, and exploration is nearly impossible. This characterizes the nature

of high-level human decision-making, as major decisions in life are often semantic and

open-ended, whether to decide which house to buy, or how to plan travel.

In light of the action space challenge, previous approaches either build rule-based

agents [107] with manually designed actions (e.g., issue “turn on lantern” if “lantern”

and “dark” both mentioned in observation text), or rely on a game handicap [106]

to provide ground truth valid actions at each step for learning-based agents to

effectively explore. However, these rule or learning-based agents do not possess

language knowledge beyond the game(s) they are designed for or trained on, which

poses the second key challenge of generalization to novel games or domains. In

contrast, humans can easily play a new game based on our prior understanding of

language and commonsense knowledge about the world. How can we inject such

language and world priors into text game agents?
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1.1.1 CALM: Applying language models for agents

Pre-trained language models have rich priors about language and commonsense, but

they are trained to write, not to act. How can we use them for agents? Contextual

Action Language Models (CALM) [356] is the first work that applies a

language model to build an agent. We fine-tune GPT-2 [258] on human gameplay

trajectories, where the task is to predict the action given a context of previous game

observations and actions. Once trained, we use CALM to sample a set of actions as a

reduced action space for a reinforcement learning agent, DRRN [108], to explore and

learn to choose the most rewarding actions.

Agent Score

CALM (GPT-2) 9.4%

CALM (n-gram) 5.5%

NAIL [107] 5.6%

CALM (w/o PT) 6.8%

CALM (20% FT) 8.1%

CALM (w/o RL) 1.8%

Figure 1.3: Normalized score
across 28 games.

We apply CALM to 28 unseen games outside

its training distribution, and find it can generalize

to these novel domains and generate reasonable ac-

tions for RL exploration, thanks to the general lan-

guage knowledge obtained from pre-training and

general game commonsense knowledge obtained

from fine-tuning. As shown in Table 1.3, CALM

(GPT-2) paired with DRRN achieves an average

normalized game score of 9.4%, significantly out-

performing the previous best agent without game

handicap, NAIL [107]. We also find that replacing

GPT-2 to smaller and simpler language models (n-gram), ablating GPT-2 pre-training

(w/o PT), reducing GPT-2 fine-tuning (20% FT), or ablating reinforcement learning

(w/o RL) all lead to worse performances.

CALM shows the potential of language models for building autonomous agents: they

can empower agents with general prior knowledge useful for various environments and

tasks, and generate open-ended actions for decision-making given context. However,
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CALM still relies on game-specific reinforcement learning to optimize for game scores.

Does the RL part also learn generalizable language understanding and reasoning?

1.1.2 Hash: Re-thinking semantics in text games and agents

(a) Zork I
Observation 21: You are in the living room. There is a
doorway to the east, a wooden door with strange gothic
lettering to the west, which appears to be nailed shut. . .

Action 21 : move rug

Observation 22 : With a great effort, the rug is moved to
one side of the room, revealing the dusty cover of a closed
trap door... Living room... You are carrying: ...

Action 22 : open trap

(b) hash

Observation 21:
0x6fc2204

Action 21 : 0x3a04222

Observation 22 :
0x103ba12

Action 22 : 0x16bb110

Figure 1.4: (a): Sample gameplay from Zork I, and (b) hash replaces observation and
action texts by their string hash values.

To answer the question, in [354], we find that if we replace the observation and

action texts for their hash strings, the DRRN agent performance does not degrade,

but even slightly improves from 21% to 25% across 12 games (Figure 1.4). Note that

in this hash scheme, all language semantics are lost, and even a word change would

lead to a completely different hash representation. In this sense, the RL agent is

not learning to understand the game via language semantics but to memorize it via

language as markers.

This is fundamentally different from the way humans use language to represent

and reason about the world in a general and generalizable way. For example, when we

play the Zork1 game for the first time, instead of millions of interactions to overfit the

game, we reason over the observation in our mind: “The door is nailed shut so I should

focus on exploring the current room, but there is no apparent object that is interesting.

Under the rug, there might be more things, so I can try to move it and see what

happens.” Thinking a thought is a special action for humans, as it does not affect the
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external world but instead updates the internal context and informs future decision-

making. Also, the space of thought is infinite (anything can be thought of), so strong

language priors are needed to effectively reason. In this sense, we define language

agents not as agents with textual observation and action spaces, but agents that

process observations to actions via internal mechanisms of natural language

reasoning. Under this definition, the external observation and action spaces do

not even have to be textual, as various environments can be turned into text games

via off-the-shelf perception and control modules, e.g., image captioning models or

symbolic controllers. What matters is the internal information processing mechanism,

not external modalities, and the manually designed symbolic representations in rule-

based agents or learned neural embeddings in learning-based agents cannot achieve

human-like open-ended language reasoning across general domains.

But when the environment is small, closed, and synthetic like text games, which

is often the case for academic research, manual rule design or reinforcement learning

can overfit the environment without the need for open-ended language reasoning or

generalization to new scenarios. As a result, the developed methods or agents often

prove hard to transfer to real-world scenarios and deliver practical values. While

interacting with humans or the physical world is open-ended and practical, it is also

slow, expensive, and noisy, so collecting scalable data or reward signals has been

challenging. Thus, we need fundamentally new domains that are scalable, open-

ended, and practical to challenge traditional agents and motivate new methods for

agents with language reasoning.

These reflections lead to the rest of the thesis outlined below.

26



1.2 Approach and Outline

My approach to language agents is holistic, which starts by constructing practical

problems with scalable benchmarks that challenge existing agents and language models

in decision-making over open-ended actions and long horizon (Part I, Chapters 2 and

3). Solving these problems motivates new methodology for agents that can reason

in language, to which my work has made foundational contributions by designing

simple, general methods that connect language model reasoning to agent acting and

planning, with the key idea that reasoning can be seen as internal actions for

agents (Part II, Chapters 4 and 5). Lastly, I synthesize the empirical insights from

my problems, methods, and experiments into a principled conceptual framework for

language agents, which inspires various future directions (Part III, Chapters 6 and 7).

The thesis is based on my following work [356, 354, 352, 349, 274, 164, 129, 360,

41, 276, 358, 292], whose content and appendices contain more details to be checked,

and associated data and code all publicly released.
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Part I

Benchmarks
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Chapter 2

WebShop: Benchmarking Agents

via Web Interaction

2.1 Introduction

A general-purpose autonomous agent should tackle the following key challenges:

(1) reasoning over complex textual, visual, and other multimodal observations, (2)

decision-making over open-ended actions, and (3) exploration over long horizon.

To build language agents towards these strong capabilities, we first need to have a

research benchmark that reflects these key challenges. However, existing benchmarks

for agents often feature environments with small action spaces, synthetic text (or

pixels), and short-horizon tasks (Figure 2.1). On the other hand, practical applications

for agents, such as dialogue or robotics, feature these research challenges but prove

challenging in building scalable benchmarks, as it is slow, expensive, and noisy to

collect interactions and reward signals from humans or physical environments.

Therefore, in order to make progress in building language agents, we believe there

is a need for scalable interactive environments that contain: (1) language elements

that reflect rich, real-world usage and are collectible at scale, and (2) task feedback
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Agent benchmarks without these challenges

10

• Simulation environment 

• Synthetic text (if any)

Published as a conference paper at ICLR 2019

(a) GoToObj: "go to
the blue ball"

(b) PutNextLocal:
"put the blue key next
to the green ball"

(c) BossLevel: "pick up the grey box behind you, then go
to the grey key and open a door". Note that the green door
near the bottom left needs to be unlocked with a green key,
but this is not explicitly stated in the instruction.

Figure 1: Three BabyAI levels built using the MiniGrid environment. The red triangle represents
the agent, and the light-grey shaded area represents its field of view (partial observation).

rewards) would have to be given by a human, and are therefore rather expensive to get. Under this
assumption, imitation learning methods such as behavioral cloning, Searn (Daumé Iii et al., 2009),
DAGGER (Ross et al., 2011) or maximum-entropy RL (Ziebart et al., 2008) are more appealing, as
more learning can be achieved per human-input unit.

Similar to BabyAI, studying sample efficiency of deep learning methods was a goal of the bAbI
tasks (Weston et al., 2016), which tested reasoning capabilities of a learning agent. Our work differs
in both of the object of the study (grounded language with a simulated human in the loop) and in the
method: instead of generating a fixed-size dataset and measuring the performance, we measure how
much data a general-purpose model would require to get close-to-perfect performance.

There has been much research on instruction following with natural language (Tellex et al., 2011;
Chen and Mooney, 2011; Artzi and Zettlemoyer, 2013; Mei et al., 2016; Williams et al., 2018) as
well as several datasets including SAIL (Macmahon et al., 2006; Chen and Mooney, 2011) and
Room-to-Room (Anderson et al., 2018). Instead of using natural language, BabyAI utilises a syn-
thetic Baby language, in order to fully control the semantics of an instruction and easily generate as
much data as needed.

Finally, Wang et al. (2016) presented a system that interactively learned language from a human.
We note that their system relied on substantial amounts of prior knowledge about the task, most
importantly a task-specific executable formal language.

3 BABYAI PLATFORM

The BabyAI platform that we present in this work comprises an efficiently simulated gridworld
environment (MiniGrid) and a number of instruction-following tasks that we call levels, all formu-
lated using subsets of a synthetic language (Baby Language). The platform also includes a bot that
can generate successful demonstrations for all BabyAI levels. All the code is available online at
https://github.com/mila-iqia/babyai/tree/iclr19.

3

(a) House (b) Basic

Figure 7: The same generated game with two themed grammars: house and basic.

Room Descriptions The description of a room is the concatenation of the room-level description
of every object it contains, shown typically when entering the room or upon using the look
command. The room-level description of an object contains information the player should be
aware of upon entering the room (e.g., “There is a chest here. It is open and you
can see some gold coins in it.”). The room’s description also mentions its possible exits
(e.g., “There is a path leading north.”). It is updated dynamically based on changes to
the states of objects in the room, for example listing whether a container is open, closed, or locked,
and which objects it contains.

Quest Instructions We use instructions to explain to the player what to do in a game. An
instruction is a piece of text describing a particular action or several di�erent actions. For ex-
ample, “Retrieve the blue key” could be used to represent the action take blue key,
whereas “Take the red key from the locked chest” may represent the sequence of ac-
tions unlock chest / open chest / take red key. In TextWorld, instructions may optionally
describe every action of a quest (easier), only the final action (harder), or they may force the
player to figure out what to do from scratch (goal identification; hardest). Likewise, the ability
to combine actions into a single instruction can also be toggled; identifying a sequence of actions
from an instruction rather than a single action is an additional challenge.

Text Generation Options TextWorld o�ers some control over di�erent aspects of the text
generation. Objects with similar attributes/states can be grouped together when describing a
room (e.g., “In here, you see two red containers: a box and a chest.”). Ob-
jects mentioned in an instruction can be referred to using one or several of their attributes
(e.g., “Take the red edible thing.”). Use of coreference (e.g., “There is a chest.
It is open. In it, you see nothing interesting.”) is also optional.

TextWorld also o�ers the choice between two themed grammars: house and basic. The house
theme describes the world as if the game takes place in a modern house. The second theme uses a
simple grammar with almost no linguistic variation (e.g., no adjectives, no multi-word names). In
this case, objects with the same attributes use a shared, prototypical prefix for their names followed
by a number (e.g., stand42). The basic grammar cuts down the vocabulary and the language
complexity to ease the training of neural generative models. These house and basic themes can be
seen applied to the same underlying game in Figure 7.
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World of Bits: An Open-Domain Platform for Web-Based Agents

Figure 3. 7 of the 100 MiniWoB web tasks, ranging from simple (left) to more complex (right).

ment learning environments called Mini World of Bits
(MiniWoB) that share many of the characteristics of live
web tasks (interacting with buttons, text fields, sliders, date
pickers, etc.) and allows us to study these challenges in a
controlled context. Since the web offers powerful visual
design tools, the average MiniWoB environment is only
112 lines of HTML/CSS/JavaScript. Each MiniWoB envi-
ronment is an HTML page that is 210 pixels high, 160 pix-
els wide (i.e. identical to the ATARI environment dimen-
sions) — the top 50 pixels (in yellow background) contain
the natural language task description (randomly generated)
and the 160 ⇥ 160 area below is for interactions. The re-
wards range from �1.0 (failure) to 1.0 (success) and are
weighted linearly with time to encourage fast completion
time. See Figure 7 for examples.

2.3. Live Web Tasks: FormWoB

While it is possible to create web tasks from scratch (e.g.
MiniWoB), the Internet already offers a massive repository
of websites. In this section we describe an approach that
allows us to convert these websites into web tasks.

Since websites change over time and since we do not wish
to spam websites with requests while the agent is train-
ing, we need to create an offline approximation that the
agent can interact with. To do this, when we collect hu-
man demonstrations, we use a proxy to record all HTTP
requests and responses between the agent and the website.
To train and evaluate agents on a web task, we use the proxy
to handle all requests with the recorded responses.

We also use requests to define reward functions. Form-
filling tasks involve making a final request to the website
with a set of key-value pairs (e.g., {from: DEN, to: JFK}).
We define the reward function as the fraction of key-value
pairs that match those in human demonstrations.2

When an agent performs an action that generates a request
never seen during human demonstrations (i.e., a cache
miss), we immediately end the episode with zero reward.
This provides a lower bound on the true reward if the agent

2Ideally, we would require exact match, but this resulted in too
sparse of a reward signal to train and evaluate with.

Figure 4. Our crowdsourcing interface for collecting human
demonstrations on the web. The left side streams visual obser-
vations using VNC and the right side displays queries. All ob-
servations and actions are recorded. At the end of episode, the
worker marks a DOM element as the answer (green box).

were to interact with the real website (assuming all rewards
are non-negative), since all action sequences that result in
a cache miss receive the minimum possible reward.

FormWoB benchmark. We applied this approach to four
flight booking websites (United, Alaska, AA, and JetBlue).
On each website, an agent must fill out a form and click
on the submit button. The form filling process requires a
diverse set of interaction skills, such as typing cities in a
text box using autocomplete, using a date picker, etc. For
each website, there is a query template parameterized by
the following fields: an origin airport, a destination airport,
a departure date, and a return date. Airport names are sam-
pled from 11 major US cities, and dates are sampled from
March 2017. We created 100 different instantiations for
each query template, and collected on average 1 episode of
human demonstration for every query.

2.4. Crowdsourcing Web Tasks at Scale: QAWoB

To take full advantage of the scale and diversity of the web,
we now present a more scalable approach to generating
web tasks that does not involve specifying the reward func-
tions manually for each web task. The key is cast web tasks
as question answering, and solicit questions from crowd-

MiniWoB     
(Shi et al., 2017)

TextWorld     
(Côté et al., 2019)

BabyAI                 
(Chevalier-Boisvert et al., 2019)

• Small action space 

• Short-horizon tasks

Figure 2.1: Typical benchmarks for agents that perceive or generate language usually
feature synthetic text and environments, small action spaces, and short-horizon tasks.

that is well-defined and automatically computable to facilitate interactive learning,

without the constant need for expensive feedback from humans.

The world wide web (WWW) is a massive open-domain interactive environment

that inherently satisfies the first aforementioned requirement through its intercon-

nected set of pages with natural text, images and interactive elements. By being

simultaneously scalable, semantic, interactive, dynamic and realistic, the web is

uniquely different from existing environments for autonomous agents like games or

3D navigation. Moreover, the web also provides a practical environment to deploy

trained agents, with great potential for alleviating human efforts in tedious tasks

(e.g. buying products, booking appointments). While there has been prior work on

building web-based tasks, they either lack depth in the transition and action spaces, or

prove difficult to scale up. Some benchmarks only contain either a single classification

task [243, 287, 200] or interactions containing only a handful of different pages in each

episode [275]. Others propose tasks with longer horizons but are either limited to

following hyperlinks for web navigation [230] or require human-in-the-loop feedback

due to the lack of an automated reward function [209].

In this chapter, we introduce WebShop (Figure 2.2) – a large-scale interactive

web-based environment for language understanding and decision making – and train

autonomous agents to complete tasks on this benchmark. With the goals of being
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Reward: 
1.0

Buy NowDescription Overview

Figure 2.2: The WebShop environment. A: An example task trajectory in HTML mode,
where a user can (1) search a query in a search page, (2) click a product item in a
results page, (3) choose a color option in a item page, (4) check item-detail pages
and go back to the item page, and (5) finally buy the product to end the episode
and receive a reward r ∈ [0, 1] (§2.3.2). B: the results page in simple mode for
agent training and evaluation. The blue text indicates clickable actions and bold text
indicates an action selected by the agent. C: The product notation used in §2.3 with
corresponding examples from the product in A. The attributes Yatt are hidden from
the task performer.

scalable and containing realistic language and visual elements, WebShop emulates

the task of online shopping on an e-commerce website, where the agent’s goal is to

understand a human-provided text instruction and purchase a product to match the

specifications. To do so, the agent needs to query the website’s search engine, choose

items to explore from search results, open and read their description and details, and

select the necessary options (e.g. 32 oz., red color) before clicking the ‘Buy’ button. In

order to pick the optimal product that matches user requirements, the agent may need

to view and compare various products (including backtracking between pages), and
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potentially perform multiple searches. WebShop contains over one million products

scraped from amazon.com, over 12 thousand crowdsourced instructions, and a diverse

semantic action space of searching text queries and choosing text buttons. It is

packaged into a convenient OpenAI Gym [26] environment and can be rendered in

two modes (HTML or simple) with parallel observation spaces that are easy for human

and model respectively. Rewards are automatically computed using a combination

of programmatic matching functions that consider the attributes, type, options and

price of the chosen product, alleviating the need for human evaluation and providing

a path to scaling up interactive learning.

We develop several agents to perform this task, using both reinforcement learning

(RL) and imitation learning (IL). We also leverage the latest pre-trained language

models [161, 67] for representing and generating text. Our modular architecture

includes a factorized processing of state observations and action choices using ResNets

(visual) and Transformers (text), followed by an attention fusion layer that helps the

agent contextually score each action. Our best agent achieves an average score of

62.4 (out of 100) and successfully completes the task 28.7% of the time, significantly

higher than a heuristic baseline that achieves 45.6 and 9.6%, respectively. While this

demonstrates the potential for IL and RL, the agents are still much lower than human

experts, who can achieve 82.1 and 59.6% on this task.1

We perform several analyses and ablation studies to identify the cause of this

gap and find several avenues for agent improvement in the future including more

robust search generation, explicit memory modules, and better handling of noisy web

text. Finally, we also demonstrate an instance of sim-to-real transfer by deploying

agents trained with WebShop to operate on amazon.com and ebay.com, and find that

they can achieve similar performances despite search engine and product differences,

1In our analysis (§2.5.3), we observe that the task requires patience and consistency, which is
lacking in some crowdsource workers, leading to lower scores. Even with this caveat, the gap between
human performance and the model remains significant.
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and consistently outperform the rule baseline of using the first result returned by

the commercial search engines when directly searching the instruction texts. This

demonstrates the practical potential of our work towards developing agents that can

operate autonomously on the world wide web (WWW).

2.2 Related Work

Reinforcement learning on the web. WikiNav [230] is a benchmark for RL agents

navigating webpages, but the task is purely navigational with the actions restricted to

either choosing a hyperlink to follow or deciding to stop. The World of Bits (WoB)

benchmark [275] enables training of RL agents to complete tasks on webpages using

pixel and Document Object Model (DOM) observations. Several follow-up papers have

tackled MiniWoB using techniques like workflow-guided exploration [182], curricu-

lum and meta-learning [97], DOM tree representation [127], adversarial environment

generation [96] and large-scale behavioral cloning [121]. However, MiniWoB lacks

long-range decision making across multiple different pages and does not scale easily in

terms of difficulty or size due to its use of low-level mouse clicks and keystrokes as

actions. In contrast, WebShop requires navigating longer paths with context-based

action selection and backtracking, and it uses high-level search and choose actions

that are more scalable and transferable to real settings. While not directly operating

on web pages, AndroidEnv [305] and MoTIF [36] provide environments to train agents

for interacting with apps and services on mobile platforms.

Non-interactive web-based tasks. Various supervised classification tasks on

webpages have been proposed, including predicting web elements [243], generating API

calls [287, 288, 337] and semantic parsing into concept-level navigation actions [200].

Perhaps most similar content-wise to our work is the Klarna product page dataset [115]

which contains over 50, 000 product pages labeled with different element categories
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for supervised classification. All these works only consider supervised settings with a

single decision, and may require the definition of web APIs or command templates

for each domain. Our benchmark, WebShop, combines webpages with realistic text

and image content with a rich and diverse interaction space for long-range sequential

decision making.

Leveraging the web for traditional NLP tasks. Several papers have explored the

use of the web for information extraction [211] and retrieval [3], question answering [366,

156], dialog [279], and training language models on webtext [6]. These approaches

primarily use web search engines as a knowledge retriever for gathering additional

evidence for the task at hand. Perhaps most similar to our work is WebGPT [209],

which uses a web interface integrated with a search engine to train RL agents to

navigate the web and answer questions. However, our environment has a more diverse

action and observation space (including images) and does not require human-in-the-

loop evaluation.

2.3 The WebShop Environment

We create WebShop as a large-scale web-based interactive environment with over 1.1

million real-world products scraped from amazon.com. In this environment, an agent

needs to find and purchase a product according to specifications provided in a natural

language instruction. WebShop is designed in a modular fashion which disentangles

the website transitions from the task-specific aspects like instructions and reward,

allowing for easy extension to new tasks and domains.

2.3.1 Task formulation

WebShop can be formulated as a partially observable Markov decision process

(POMDP) (S,A, T ,R,U ,O) with state space S, action space A, deterministic
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Type Argument State → Next State

search [Query ] Search → Results
choose Back to search ∗ → Search
choose Prev/Next page Results → Results
choose [Product title] Results → Item
choose [Option] Item → Item
choose Desc/Overview Item → Item-Detail
choose Previous Item-Detail → Item
choose Buy Item → Episode End

Table 2.1: Actions in WebShop.

Figure 2.3: Item rank in search
results when the instruction is di-
rectly used as search query.

transition function T : S ×A → S, reward function R : S × A → [0, 1], instruction

space U , and a state observation space O.

State and action. A state s ∈ S represents a web page, which falls into one of

the four types – the search page that contains a search bar, the results page that

lists a set of products returned by a search engine, the item page that describes a

product, or the item-detail page that shows further information about the product

(Figure 2.2A(1-4) respectively). We define the following notations for a product y.

We denote ȳ to be the aggregation of the various text fields including product title,

description, and overview. We denote yprice to be the price, Yopt to be a set of buying

options, and I to be a set of images, each corresponding to a specific option. Finally,

each product is associated with Yatt, a set of attributes hidden from the agent which

is extracted from the title and the item-detail pages (§2.3.2). The attributes are used

for the automatic reward calculation.

An action a ∈ A(s) can either be searching a text query (e.g. search[Red shoes])

or choosing a text button (e.g. choose[Size 9]) as shown in Table 2.1. These two

action types are not available simultaneously – search is only allowed when the agent is

at the search page; on all other pages, click is the only action choice. The chosen action

argument (button) will be clicked as a web link as opposed to the low-level mouse-
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click actions in previous environments such as World of Bits [275]. The transitions

initiated by clicks deterministically redirect the web page to one of the four page

types (Table 2.1). The transition initiated by search is based on a deterministic search

engine (§2.3.2).

Observation. Using Flask [263] and OpenAI Gym [26], we provide two paral-

lel observation modes to render the state and instruction S × I → O: (1) HTML

mode that contains the HTML of the web page, allowing for interaction in a web

browser(Figure 2.2A), and (2) simple mode which strips away extraneous meta-data

from raw HTML into a simpler format (Figure 2.2B). The human performance scores

in §2.4.2 are collected in the HTML mode, while all models are trained and evaluated in

the simple mode. Note that while the environment allows for training reinforcement

learning agents on raw pixels in HTML mode (like in [275]), we believe that it provides

a very low-level non-semantic action space. Moreover, it is straightforward to write a

translator that converts any new HTML page into simple format for use with trained

agents, which enables sim-to-real transfer.

Instruction and reward. Each natural language instruction u ∈ U contains the

following information: a non-empty set of attributes Uatt, a set of options Uopt,

and a price uprice. The instruction is generated based on a target product y∗ by

human annotators. The instruction collection process is lightweight and scalable

(§2.3.2). Concretely, Uatt ⊆ Y ∗
att is a subset of the product attributes, Uopt ⊆ Y ∗

opt

is a subset of the product option field-value pairs, uprice > y∗price is a price set to be

higher than the target product price. For example, the instruction “Can you find

me a pair of black-and-blue sneaker that is good in rain weather? I want it to have

puffy soles, and price less than 90 dollars.” contains the aforementioned attributes

Uatt = {“waterproof”, “soft sole”} and option Uopt = {“color”: “black and blue”}. In

each episode, the agent receives a reward r = R(sT , a) in the end at timestep T , where
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a = choose[buy], y is the product chosen by the agent in the final state sT , and Yatt

and Yopt are its corresponding attributes and options. The reward is defined as:

r = rtype ·
|Uatt ∩ Yatt|+ |Uopt ∩ Yopt|+ 1[yprice ≤ uprice]

|Uatt|+ |Uopt|+ 1
(2.1)

where the type reward rtype = TextMatch(ȳ, ȳ∗) is based on text matching heuristics to

assign low reward when y and y∗ have similar attributes and options but are obviously

different types of products. For example, “butter” and “plant-based meat” differ in

types but may both contain attributes “cruelty-free”, “non-GMO”, and an option

“size: pack of 2”.

Evaluation metrics. We use two evaluation metrics: (1) Task Score: defined as

(100× avg. reward), which captures the average reward obtained across episodes; and

(2) Success Rate (SR) defined as the portion of instructions where r = 1. Note that

it is possible to obtain r = 1 for an episode even if the final product is not y∗ — for

example, there could be many items that satisfy the goal “I want a red shirt”, even if

the goal is generated from a specific red shirt item.

2.3.2 Environment implementation

Data scraping We use ScraperAPI [227] to scrape 1, 181, 436 products from amazon.

com across 5 categories (fashion, makeup, electronics, furniture, and food) using 113

sub-category names as queries. The product texts (title and item details) have an

average length of 262.9 and a vocabulary size 224, 041 (word frequency higher than

10). In addition, the products have a total of 842, 849 unique options, reflecting the

scale and complexity of the data.

Search engine We use Pyserini [177] for the search engine, where indices are built

offline using a BM25 sparse retriever with text for each product concatenated from
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the title, description, overview, and customization options. The search engine is

deterministic, which eases imitation learning and result reproducibility.

Attribute mining and annotation. Each product is annotated with a set of

hidden attributes, which are used to represent its latent characteristics as well as to

calculate the reward as detailed in §2.3. An attribute is a short natural language

phrase that describes the property of the product (see examples in Figure 2.2). We

mine the attributes by calculating TF-IDF scores for all bi-grams in the concatenated

titles and descriptions based on each product category. We review the top 200 bi-grams

for each category, remove the noisy ones by inspection (decide based on whether the

bi-gram is human understandable), and assign them to the products. We consolidate

a pool of 670 attributes.

Natural language instructions. We use Amazon Mechanical Turk (AMT) to

collect natural language instructions that specify goal products with appropriate

options. Specifically, an AMT worker is presented with a sampled goal product,

including the product title, category, attributes, and the buying options, and asked to

write a command to instruct an automatic shopping agent to find the target. Workers

are instructed to avoid being too specific such as including the entire title in the

instruction, but stay faithful to describing the target product. We collect a total

of 12, 087 linguistically diverse instructions with an overall vocabulary size of 9, 036

words and an average length of 15.9 words.

Human demonstrations. We collect trajectories from humans performing the task

in the HTML mode of WebShop to understand the task difficulty for humans and to

analyze how humans would solve the task. We use qualification tests to train and

select motivated workers to perform the task. We recruit and train a total of 13
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workers for data collection, and among them we select the top 7 performing workers

to be “experts”. We also leverage this data to perform imitation learning.

2.3.3 Research challenges

WebShop brings together several research challenges for autonomous systems from

various subfields in NLP and RL into a single benchmark. These include: 1) generation

of good search queries [143, 388] and reformulation [231, 320], 2) strategic exploration

for navigating through the website [356, 354, 182], 3) robust language understanding

for textual state and action spaces [12, 34, 106, 277], and 4) long-term memory

for comparing items or backtracking [330, 82, 154] (Figure 2.2). While we believe

individual advances in each of these will improve agent performance, WebShop also

provides an ideal testbed for the development of interdisciplinary techniques that

tackle more than one of the above mentioned challenges simultaneously. For example,

external memory modules may be very effective if combined with strategic exploration,

or exploration could be helpful in information query reformulation. Further analysis

based on human and model trajectories is in §2.5.3.

2.4 Methods

We propose various models that combine language and image pre-training with

imitation learning (IL) and reinforcement learning (RL).

2.4.1 Rule baseline

A simple rule baseline is to search the exact instruction text, then choose and buy the

first item in the results page without choosing any options. The heavy lifting of the

lexical search engine makes it also a simple non-learnable information retrieval (IR)

baseline, and would lead to a non-trivial attribute reward. However, simple heuristic
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Figure 2.4: Architecture of our choice-based imitation learning (IL) model. The image
I is passed to a ResNet to obtain the image representation. The instruction text u is
passed to a transformer (initialized with BERT) to obtain the text representations.
The concatenated bi-modal representations are fused with the action representations
using the Attention Fusion Layer. The resulting fused-action representations are
mean-pooled and reduced by an MLP layer to a scalar value S(o, a) denoting the logit
value of the action choose[khaki].

rules cannot resolve noisy natural language options, strategically explore, or learn to

generate what to search, so the total reward and task success rate should be low.

2.4.2 Imitation learning (IL)

For the text generation and choice problems presented in WebShop, we propose using

two pre-trained language models to separately learn how to search and choose from

human demonstrations.

Imitating human search generation. We frame searching as a sequence-to-

sequence text-generation problem: the agent generates a search action a = search[. . .]

given an instruction u without considering any other context (e.g. past searches, visited

items). We use M = 1, 421 instruction-search pairs from 1, 012 training human

trajectories to construct a dataset D = {(u, a)}Mi=1 and fine-tune a BART model [161]
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parameterized by ϕ to perform conditional language modeling:

Lsearch = Eu,a∼D [− log πϕ(a | u)] (2.2)

Imitating human choice. The choice-based imitation model (Figure 2.4) predicts

a probability distribution over all the available click actions A(o) in observation o

and maximizes the likelihood of the human clicked button a∗ ∈ A(o). We construct

a dataset D′ = {(o,A(o), a∗)}M ′
i=1 of M ′ = 9, 558 samples from the training human

trajectories. We use a 12-layer pre-trained BERT model [68] parameterized by θ to

encode the o into an observation representation of contextualized token embeddings,

and we similarly encode each action. Each action representation is passed into a

cross-attention layer with the observation representation, then mean pooled into a

single vector and multiplied with a matrix W to obtain a scalar score S(o, a). The

policy πθ (a | o,A(o)) is the softmax distribution over action scores S(o, a):

Lchoose = Eo,A(o),a∗∼D′ [− log πθ (a∗ | o,A(o))] (2.3)

πθ (a | o,A(o)) ∼ exp
(
W⊤mean

[
cross-attn

(
BERT(o; θ),BERT(a; θ)

)])
(2.4)

Handling Images. We use a pre-trained ResNet-50 [109] to pre-process images

across different products and options into a 512 dimensional feature vector, which is

then transformed into 768 dimensions with a learned linear layer and concatenated to

BERT(o) as the observation representation.

Full pipeline. Combining the above during environment interaction, we use the

BART model in the search page to generate the top-5 search queries via beam search

and choose a random one. For other pages, we sample one action from πθ (a | o,A(o))

using the BERT model. We find these methods useful to encourage diverse actions.

In contrast, an ineffective strategy that uses only the top generated search query or
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the button with the highest probability might lead to limited product candidates or

being stuck (e.g. bouncing back and forth between pages).

2.4.3 Reinforcement learning (RL)

We also fine-tune the choice-based IL model with online RL (i.e. IL+RL). Prior work

suggests that directly fine-tuning text generation via RL might lead to language

drifting [157] and deteriorated performance. Therefore, we freeze the BART model to

provide the top-10 search generations as a refined action space for the choice-based

IL model to learn to pick – an inspiration borrowed from previous work in text

games [356] and referential games [157]. We use the policy gradient method [205] with

return-to-go Rt = Eπ[rt + γRt+1] and a learned value baseline V (o) = W⊤
v BERT(o; θ)

parameterized by {Wv, θ} (the BERT weights are tied with the policy):

LPG = Eπ [− (Rt − V (ot)) log π (at | ot,A(ot))] (2.5)

The value V (o) is learned with an L2 loss Lvalue = (Rt−V (ot))
2. We also add an entropy

loss Lentropy =
∑

a∈A(ot)
πθ

(
at | ot,A(ot)

)
log πθ

(
at | ot,A(ot)

)
to prevent premature

convergence. Our full RL model minimizes the total loss LRL = LPG+Lvalue+Lentropy.

2.5 Experiments

2.5.1 Setup and task verification

We split a total of 12, 087 instructions into an i.i.d. distributed train / development

/ test split of 10, 587 / 1, 000 / 500 instances for all models. While future work can

investigate splits with more generalization gaps (e.g. split by product category), we

will show the i.i.d. split is already challenging for current models. We randomly sample

a subset of the 10, 587 training instructions, then collect 1, 012 human demonstrations
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LP 
Search

LP 
Choice

Human 
Demo

Use 
Reward

    Rule

    IL w/o

    LP Choice ✓ ✓
    IL w/o

    LP Search ✓ ✓
    IL ✓ ✓ ✓
    RL ✓ ✓
    RL (RNN) ✓
    IL+RL ✓ ✓ ✓ ✓

45.6 45.8

59.9
56.0

52.5
55.2

62.4

9.6 10.6

29.126.3

11.2

17.6
28.7

(%)

Figure 2.5: Task scores and Success Rate (%) for our models on the test split of
WebShop over 3 trials. LP Search uses a pre-trained BART model to generate the
search query and IL w/o LP Search uses the rule-based heuristic. LP Choice uses
pre-trained BERT weights to initialize the choice action model and IL w/o LP Choice
trains a Transformer from scratch.

for task verification and imitation learning (IL) and a further 54 demonstrations

from instances in the development set for IL hyperparameter tuning and checkpoint

selection. We also collect human trajectories for all 500 test instructions and report

human and model performances averaged across these 500 instructions.

2.5.2 Results

Task performance. From Figure 2.5, we observe that the rule baseline obtains a low

score of 45.6 and a very low success rate of 10% since it cannot resolve options specified

in language or explore more products, empirically demonstrating the non-trivial nature

of the task. The IL model significantly outperforms the rule baseline on both metrics,

achieving a score of 59.9. Further RL finetuning improves the score to 62.4 while

slightly hurting the success rate (29.1%→ 28.7%) (analyzed further in §2.5.3). We

also observe a significant gap between models and humans – our best model’s success

rate (29.1%) is less than half of expert humans (59.6%) and only 60% of the average

human (50%). This indicates a great room for model improvement by tackling reseach

challenges in WebShop.
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IL ablations. Figure 2.5 also contains several ablations that confirm important

design choices for models. When the choice action model for the IL agent is randomly

initialized (IL (w/o LP Choice); LP = language-pretraining), the success rate drops

by nearly two-thirds, indicating the importance of language pre-training for our task.

When the search query generator in the IL agent is replaced by a simple rule, which

always uses the instruction text (IL (w/o LP Search)), both reward and success

rate drop by around 3 points. This suggests the importance to explore by expanding

the search space for exploration, but it is not as critical as learning to choose the right

options. We experiment with incorporating history of one past observation and the

last five actions into the model and find a slight degradation in the score from 59.9 to

57.3, suggesting more advanced techniques are needed to leverage past information.

RL ablations. When we directly train an RL agent (RL) from pre-trained BERT

parameters, the performance is even worse than the rule baseline. This suggests

that IL warm-starting is critical, possibly because of the significant domain shift

from traditional language tasks. We also consider a simple RL model with RNN

text encoders instead of the Transformer (RL (RNN)), which has a success rate

more than 10% worse than the IL + RL model with a much larger variance. We

hypothesize that RL with a more powerful architecture could help boost and stabilize

the performance if the model is initialized with better language and task priors.

2.5.3 Analysis

To better understand the differences between the agents and human experts, we

perform several fine-grained analyses. We first break down the overall score into

its four sub-parts according to Eq. (2.1): 1) attribute score (|Uatt ∩ Yatt|/|Uatt|), 2)

option score (|Uopt ∩ Yopt|/|Uopt|), 3) price score (1[yprice ≤ uprice]), and 4) type score

(rtype). We report trajectory statistics such as the average number of states, unique

44



Score Count
All Att Opt Type Price State Item Search

Rule 45.6 66.6 0.0 80.5 86.0 3.0 (3 / 3) 1.0 (1 / 1) 1.0 (1 / 1)
IL 59.9 69.3 45.2 86.4 84.0 9.4 (90 / 3) 1.6 (11 / 1) 1.3 (17 / 1)
IL+RL 62.4 74.0 38.9 89.7 88.7 4.5 (5 / 1) 1.0 (1 / 1) 1.0 ( 1 / 1)

Human Expert 82.1 81.8 73.9 94.4 97.7 11.3 (114 / 4) 1.9 (16 / 1) 1.4 (16 / 1)

Table 2.2: Left: Score breakdown. Right: average, maximum, and minimum number
of states visited, items checks, and searches in a trajectory.

Instruction 1

I want to find white blackout shades that are 66
inches in width and 66 inches in height. They
need to be easy to install [...]

Human Actions (r = 1.0, length = 8)
search[ 66 inches in width and 66 inches in
height white shades ]
choose[ item : CALYX... ]
choose[ Back to Search ]

search[ 66 x 66 blackout shades ]
choose[ item : Milin... ]
choose[ opt : 66”w x 66”h ]

choose[ opt : cordless bottom up-blackout-
white ]
choose[ Buy ]

IL+RL Actions (r = 0.2, length = 3)
search[ white blackout shades 65 inches in
width and 66 inches in height ]
choose[ item : Window... ]
choose[ Buy ]

Instruction 2

I need a gingko light and 20”x20” pillow cover
that is hand painted [...]

Human Actions (r = 1.0, length = 17)
search[ gingko light 20”x20” pillow cover hand
painted ]

choose[ item : Maison... ] [...]
choose[ Description ]

choose[ ¡ Previous ]
choose[ Overview ]

choose[ ¡ Previous ] [...]
choose[ item : Maison... ]
choose[ opt : 20”x20” ]

choose[ opt : nudes (gingko light) ]
choose[ Buy ]

IL+RL Actions (r = 0.25, length = 3)
search[ gingko light and 20x20 pillow cover
hand painted ]

choose[ item : UPOOS... ]
choose[ Buy ]

Table 2.3: Two example trajectories (showing only actions) from the human and the
IL+RL model. We omit some human actions from instruction 2 for space and truncate
the item names for readability. Red denotes options and blue denotes attributes.

items visited, and number of searches per episode in Table 2.2 and provide qualitative

examples of the trajectories in Table 2.3.

Human expert vs. agents. Human experts outperform the agents on all score

sub-parts (Table 2.2), but the most significant boost comes from the option score (a

28% gap), revealing that agents have trouble selecting the correct product options.

Humans also have longer trajectories, explore more items and perform more searches
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Instr. text IL BART Human expert (first) Human expert (last)

Score 94.9 94.5 94.5 95.5
Success Rate 85.4% 84.2% 85.6% 87.8%

Table 2.4: Task performance with the Choice oracle. first and last refer to the first
and last search queries found in human demonstrations, respectively.

than the agents, with a higher variance, demonstrating their flexibility. Table 2.3

provides some samples trajectories. In the first example, the human decides to search

again after removing ‘inches’, ‘width’, ‘height’, and ‘white’ from the query since

product texts often contain abbreviated symbols for these terms like ‘”’, ‘w’, and

‘h’. Thus, search generation is challenging for models since it involves reasoning

and adapting to grounded environments, and ideas from query reformulation [231, 3]

could help alleviate this. Agents also struggle to perform robust semantic matching,

which is important in choosing options that contain noisy paraphrases of instruction

spans. In the second example, the human explores several products first, and decides

to return to the first explored product, demonstrating long-term memory that is

lacking in the IL+RL model.

Effect of RL fine-tuning after IL. Table 2.2 also shows that RL fine-tuning

adapts the IL model to become more ‘greedy’ and less ‘exploratory’, as the average

trajectory length drops from 9.4 to 4.8, and the model explores fewer items and search

queries. As a result, the attribute, type, and price scores all increase, but option score

drops from 45.2 to 38.9. This points to the need for a better balance exploration with

exploitation during RL, e.g. by using intrinsic bonuses.

Results with at Choice oracle. To disentangle the effects of learning to search

from choosing the right actions, we construct a Choice oracle that has access to

the hidden reward function as well as hidden attributes and options underlying each
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product and instruction.2 Given a search query, the Choice oracle will perform an

exhaustive search over every result item, try out all combinations of options and finally

choose the best item with options that maximize the reward — meaning each episode

will take hundreds or thousands of steps, as opposed to 4.5 and 11.3 steps on average

for the IL+RL model and human experts (Table 2.2). We use 500 test instructions and

consider four types of search queries: the instruction text (used by rule baseline), top

IL BART generated query (used by all learning models), and the first and last queries

from human experts in each test trajectory.3 Choice oracle improves the success rate

of rule heuristics from 9.6% to 85.4%, and even the human expert success rate from

59.6% to 87.8% (Table 2.4), confirming that choosing the right actions is indeed a

major bottleneck for current models with great room for improvement. However, using

a better search query is still important even with such a strong Choice oracle, as the

last human search query still outperforms other search queries. This also suggests

human experts improve search query qualities over reformulations.

2.5.4 Zero-shot sim-to-real transfer

Finally, we conduct a ‘sim-to-real ’ transfer experiment where our models trained on

WebShop are tested on the real-world Amazon (amazon.com) and eBay (ebay.com)

shopping websites without any fine-tuning. We sample 100 test instructions and deploy

3 WebShop models (rule, IL, IL+RL) to interact with Amazon and eBay, and manually

score each episode based on Eq. (2.1). As shown in Table 2.5, model performances on

the two website are similar to WebShop performances in Figure 2.5, except for the

rule baseline, likely due to the better search engine of Amazon than WebShop.

On amazon.com, IL+RL achieves a Score of 65.9 and SR of 25%, outperforming the

Rule baseline’s Score of 45.8 and SR of 19% by large margin. Similarly, on ebay.com,

2A similar search oracle is also possible but harder to design since the search space is infinite.
One possible oracle is to search for the underlying product name for each instruction, but that makes
choice trivial as the underlying product is then almost always the first search result.

374.8% of the time there is only one query in the trajectory.
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amazon.com
ebay.com
amazon.com
ebay.com


Amazon eBay
Score / SR Att Opt Type Price Score / SR Att Opt Type Price

Rule 45.8 / 19% 45.6 38.0 66.2 90.0 31.7 / 7% 62.3 25.9 49.0 67.0
IL 61.5 / 27% 60.7 53.7 85.6 96.0 58.2 / 21% 60.2 52.3 85.1 96.9

IL+RL 65.9 / 25% 71.6 47.0 87.8 100.0 62.3 / 21% 69.1 39.5 91.7 97.0

Human 88.2 / 65% 86.2 76.3 99.0 100.0 79.7 / 40% 80.3 70.1 99.5 100.0

Table 2.5: Zero-shot sim-to-real transfer to Amazon and eBay over 100 test instructions.
The Score / SR (Success Rate) column indicates the overall performance. The
remaining breakdown are in Score.

IL+RL achieves a Score of 62.3 and SR of 21%, widely outperforming the Rule

baseline’s Score of 31.7 and SR of 7%. These results confirm positive sim-to-real values

of trained agents for real-world web tasks despite domain shifts in data (products)

and dynamics (search engine). We also obtain a human average score of 88.0 / 79.7

and success rate of 65% / 40% by asking turkers to find the instructed product on

the Amazon and eBay websites respectively. While humans perform much better

than agents, their web interactions are much slower — taking on average 815 seconds

per episode as opposed to < 8 seconds per episode for our IL and IL+RL models on

Amazon. This sim-to-real transfer only requires two minor coding additions, suggesting

that environments like WebShop are suitable for developing practical grounded agents

to reduce human effort on real-world web tasks.

2.6 Discussion

We have developed WebShop, a new web-based benchmark for sequential decision

making and language grounding, modeled on interaction with an e-commerce website.

We performed an empirical evaluation of autonomous agents trained using imitation

and reinforcement learning, and demonstrated promising results on sim-to-real transfer

to real-world shopping websites. Our qualitative and quantitative analysis of model

and human trajectories (§2.5.3) identified several research challenges in WebShop and

provided insights for future model development by incorporating multidisciplinary
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techniques. For example, pre-training with multi-modal data [169, 329], web hyper-

text [6], or web instruction-action mapping [244] could help agents better understand

and leverage rich semantics of webpage content, actions, and instructions. Ideas from

query (re)formulation [143, 388, 231, 320] may help agents expand the range of search

exploration, and improved action exploration [246, 74, 308] and memory [330, 82, 154]

mechanisms could help agents make better decisions over the long horizon and large

action space. The modular design of WebShop also allows for new web tasks and

domains to be easily incorporated, which we hope will help shape future research into

grounded language agents with stronger capabilities for real-world web interaction.

Beyond web interaction, WebShop initiates and inspires a new direction to bench-

mark autonomous agents based on large-scale, real-world digital environments, such

as the Internet, code terminals (Chapter 3), and other computer software. Compared

to traditional agent setups that interact with humans, physical environments, or

games, such digital automation tasks are both scalable to collect interactions

and feedback and practical for alleviating our tedious digital labor and improving

our life. They also present unique challenges for agents to reason over complex

real-world text (e.g., webpages) and make open-ended language decisions (e.g., search

query) over long horizon, which is not reflected in previous agent benchmarks. As

we see in Section 2.5.2, imitation and/or reinforcement learning agents cannot solve

such challenges yet require intensive training. This partly motivates the creation of

language agents that reason to act, and we will see in Chapter 4 how language agents

can significantly improve the WebShop performance using just one learning example.
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Chapter 3

InterCode: Benchmarking Agents

via Code Interaction

3.1 Introduction

Chapter 2 opens up the direction of benchmarking agents via digital automation,

i.e., real-world computer-based tasks. Besides web browsing, another major computer-

based task is coding, and it has two differences: (1) while the web environment

features natural language, images, video, and other multimodal elements, coding

mainly involves the interplay of natural and programming languages; (2) while web

tasks are harder to evaluate, coding naturally has unit tests as a systematic and

reliable means to evaluation. In this chapter, we establish interactive coding with

execution feedback as a new problem for evaluating and developing agents.

For humans, programming is a naturally interactive process, but existing coding

benchmarks are often not interactive. When a human programmer writes code, she

relies on several iterations of a ‘write-execute-test’ loop in order to iteratively refine

solutions, plan changes, test sub-modules, and solve ambiguities by checking execution

behavior. While this is reminiscent of other human endeavors like writing, code
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compilation and execution produce exact results that provide a deterministic form

of feedback to make the refinement process more straightforward. Depending on the

observed results, programmers perform various levels of debugging and rewriting, and

continue the process until their code satisfies the requirements.

There has been increasing interest in recent years around the development of

models that can automatically generate code given a specification in natural lan-

guage [80, 325, 55, 170, 158]. Powered by large-scale pre-training over thousands of

codebases [5, 122, 86], these models have shown solid performance on static bench-

marks like HumanEval [46], APPS [110], MBPP [15], CodeXGLUE [190]. However,

generating code in a static, sequence-to-sequence or auto-regressive fashion has several

drawbacks: 1) simple errors (even typos) can propagate and there is no chance for

recovery or revision, 2) there is a disconnect between the code generation process and

its downstream execution on the desired software and hardware environment, and 3)

there is little room for human intervention or collaboration in the code generation

process.

Recently, some works have proposed the use of execution feedback or interac-

tion [326] to benefit code generation models [146, 117, 327, 110]. However, these

papers consider their own individual setup and are difficult to compare with one

other due to the use of different compilers, execution environments, feedback signals,

and assumptions on the interactive process such as human participation to create

task descriptions or provide natural language feedback. This makes it difficult to

compare existing methods for code generation and to clearly understand the benefits

of interactive generation.

To address these issues, we propose InterCode, the first standard coding benchmark

designed natively with an interactive execution environment. Closely mimicking the

human decision-making process, InterCode allows a coding agent to interactively receive

feedback from compilers/interpreters that execute its code, and to submit further
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Question
Find all text files in the testbed directory and write 
their names to a single file called concated.txt.

Agent
pwd

Agent
ls

Bash Env
/

Bash Env
testbed  dir1  dir2  ...

...

Agent
find /testbed -type f -name ‘*.txt’...

Agent
submit

Bash Env
/testbed/dir3/textfile6.txt  /testbed...

Bash Env

 Env. State

 Compare File System
 Check if common 

edits are identical

 Answer

1. cd testbed 2. find . -type f -name; 
3. touch concated.txt 4. echo hi.txt > 
concated.txt (additional cmds...)

 A concated.txt

Agent 
Standard Output

Latest

< >

Task 
Standard Output

Gold

< >

 D file1.txt

 concated.txt

 file2.txt

 A
 C

Agent Command(s)

Calculate Lexical

Similarity

Bash Env

find /testbed -type f -name '*.txt' -
exec cat {} ; > /testbed/concated.txt

Gold Command

Bash-Specific Example of Interactive Loop & Evaluation of Agent Performance for InterCode

 Query
(Bash) “Move all images from 
my Desktop and Downloads 
to a compressed folder on 

my USB drive.”

Provided

by Task


Designer
Interact

 InterCode Env Agent

Figure 3.1: Overview of InterCode. Setting up an interactive code environment with
InterCode requires a Dockerfile, dataset, reward function definition, and a small amount
of subclass implementation. The interactive loop between agent and environment
closely mirrors real world software development processes. While InterCode task
performance is generally quantified as a binary 0/1 completion score, InterCode allows
for the design of more complex evaluation criteria that can incorporate execution
output and the effects of interaction on the state space.

refinements. We design InterCode to be like a standard reinforcement learning (RL)

environment that requires minimal human intervention and one in which generated

code is treated as actions, which are executed to reveal observations. Our framework is

(1) language and platform agnostic and can easily be used for new coding problems, (2)

uses self-contained Docker environments to provide safe execution, and (3) compatible

out-of-the-box with traditional seq2seq generation methods, while also enabling and

empowering the development of new interactive techniques.

We demonstrate the power of the framework by implementing Bash, SQL, and

Python tasks within InterCode, building on pre-existing static datasets [378, 178, 15].
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We perform experiments across diverse models and prompting methods, including

ReAct [360] and Plan & Solve [316]. Our findings concretely showcase the benefits

of interaction towards solving coding tasks, discuss the distribution of distinct code

understanding challenges across different task settings, and explore the ease with

which new tasks and datasets can be defined using InterCode.

3.2 Related Work

Interactive environments for coding. Most coding benchmarks (e.g. SQL - Spider

[364], KaggleDBQA [160]; Bash - NLC2CMD [4], NL2Bash [178]; Python - HumanEval

[46], APPS [110], MBPP [15], CodeXGLUE [190], CodeNet [251]) frame the coding

problem as a sequence transduction problem (from instruction to code), rather than an

interactive decision making problem with an execution environment. Attempts have

been made to simulate interaction by developing conversational, dialogue-style [365,

363], multi-step problem solving [228] datasets, which involve pre-annotated human-

designed queries. The work closest to InterCode has been recent explorations of Python

Jupyter Notebooks as a natural choice for interactive coding [117, 146, 361]. However,

task data and settings often constrain allowed actions to a closed domain of code and

libraries [146, 361], use evaluation procedures or metrics that may not generalize [117],

require human-in-the-loop participation (i.e. create task contexts, write problems,

evaluate execution per task instance) [146], or are Python-exclusive [117, 146, 361, 327].

InterCode provides a more general purpose foundation defining interactive coding tasks

that enables easy construction of diverse task settings, can have any programming

language(s) as the action space, and has automatic, execution-based evaluation.

Execution-based evaluation for coding. Evaluation for NL-to-code generation

models has recently shifted away from surface form similarity metrics (BLEU [240, 5],

ROUGE [176], Exact Match) towards execution oriented ratings (unit tests [15, 46,
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117, 146, 110], output matching [70, 117, 378]). The rigidity of surface form analysis

overlooks code syntax features, ignores execution effect, or over-penalizes alternative

solutions [382], On the contrary, execution-based assessment is a more thorough and

comprehensive score of code functionality [110] and is a more natural fit for open-

domain program usage that does not constrain code generation to a subset of the

language space [327]. However, for newer benchmarks and datasets that put forth

task definitions incorporating execution-based evaluation (APPS [110], ExeDS [117],

ODEX [327]), the fundamental code generation task (Context + Code → Execution

→ Score) is still devoid of interaction. InterCode combines execution-based evaluation

with flexible task construction, enabling more diverse problem-solving paradigms

within a unified coding task formulation. InterCode’s use of virtual containers as

execution sandboxes protect against harmful actions and allow for advanced evaluation

criteria beyond the aforementioned ones.

Methods for interactive or execution-based coding. The value of generative

code models and interactive problem solving has motivated a recent proliferation of

work to augment reasoning capabilities’ of existing language models [360, 276, 316, 358,

372, 47] or propose new modeling techniques to tackle coding as a sequential decision

making and reasoning tasks [35, 48, 75, 170, 42, 158], of which evaluation is unit test

based. Approaches that leverage execution typically use re-ranking [374, 226, 362, 369]

or majority vote [48, 170, 273] to decide on a final prediction. Additional work also

explores incorporating human-in-the-loop [40, 145], compilers [321], and text [322, 371]

feedback. A common thread among these contributions is that 1) the task setting can

only provide the investigated form of feedback and 2) sought-after capabilities are

exemplified by strong performance on favorably curated tasks and datasets, rendering

comparisons across benchmarks tedious. InterCode has the potential to standardize the

evaluation of these methods because 1) the interactive coding task is a conglomeration

of many interesting interaction, reasoning, and decision-making challenges and 2)

54



InterCode’s task construction makes it possible to incorporate a wide variety of sources

of feedback.

3.3 The InterCode Benchmark

3.3.1 Formulation

The InterCode benchmark formalizes interactive coding with execution feedback as

a partially observable Markov decision process (POMDP) (U ,S,A,O, T ,R) with

instruction space U , state space S, action space A, observation space O, transition

function T : S × A → S, and reward function R : S × A → [0, 1]. Given a coding

instruction u ∈ U in natural language, an agent issues code or a special submit

keyword as an action at ∈ A. An action is admissible [356] if it can be parsed and

executed in the compiler/interpreter environment, and an admissible action incurs a

change in the latent state space st+1 ∈ S, and an execution feedback as observation

ot+1 ∈ O. The interaction loop repeats until the submit action is issued, wherein

the task episode ends and a reward r = R(sT , submit) ∈ [0, 1] is computed, with 1

representing task completion. We use the Success Rate (SR) metric, defined as the

proportion of task episodes where r = 1. We also define the Error % metric, which is

the percentage of non admissible actions across task episodes.

3.3.2 Construction pipeline

At a high level, InterCode decomposes the construction of an interactive coding

task into three modular parts: (1) environment construction, (2) data collection,

and (3) reward design. This workflow allows for the safe execution of transition

functions, flexible reward design, and convenient adaptation of existing instructions

to an interactive setting.
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Docker-based environments. InterCode uses Docker [202] virtual containers as

a general-purpose execution sandbox. Given a Dockerfile that defines a system and

execution entrypoint, InterCode creates a corresponding, stateful virtual container that

hosts the desired state space and transition function. We choose Docker as the basis

of InterCode’s environment construction for its safe execution in virtual containers,

reproducibility of a Dockerfile across any Docker-equipped machine, and excellent

coverage of application code, libraries, and dependencies offered by the Dockerfile

DSL.

Data collection. InterCode requires that a dataset has at minimum two fields:

query, a natural language instruction u ∈ U , and gold, an answer or code block that

is a procedure for generating the correct answer. We define these conditions to make

it easy to adapt existing text-to-code datasets to an interactive setting while also

leaving plenty of bandwidth for constructing new tasks and datasets.

Reward design. Across a single task episode, the action, observation, and

state modification (if any) per interaction loop are implicitly logged by InterCode.

InterCode’s default reward function determines task completion via an exact match of

the agent’s execution output (observation and state modifications) against the gold

command, where 1 is awarded only if all components match. Since Exact Match is

usually too stringent of an evaluation criteria, InterCode exposes a reward function

endpoint that has access to both the interaction history and the execution container,

allowing for custom reward function definitions that can incorporate multiple signals.

3.3.3 Implementations

Following the procedure discussed in Section 3.3.2, we create two separate InterCode

based environments where Bash and SQL are the action spaces respectively. Table 3.1

summarizes them.
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Environment Dataset Reward Function

Bash Ubuntu Terminal NL2Bash [178] (200) Latest Output+ File Diff
SQL MySQL Database Spider 1.0 [364] (1034) Latest Output
Python Python Interpreter MBPP [15] (117) Submitted Function

Table 3.1: Rundown of the three environments developed using the InterCode frame-
work. The numbers in parentheses refer to the number of task instances adopted from
each dataset. Each environment is defined in under 200 lines of code total.

InterCode-Bash. We define a bash shell within an Ubuntu Operating System

as the task setting. To evaluate an agent’s ability to adapt generations to different

situations, we architect four distinct file systems that can be swapped into the Bash

environment by changing a single line in the Dockerfile.

We bootstrap the NL2Bash [178] dataset (which lacks specificity in queries and

grounding to any underlying file system, preventing it from being used directly for

interactive evaluations) to create an interactive coding task where an agent completes

an instruction via bash actions. Transferring NL2Bash to the interactive task setting

requires simple transformations to ground instructions and gold code blocks in the

file system. First, we consider a subset of 1000 commands with each having ≥ 4

utilities. We then filter out commands that are non-UNIX, non-Linux, or use utilities

we currently do not support (eg. ”ssh”, ”sudo”, time, and GUI-dependent utilities).

Finally, we enhance under-specified commands with specific file names/directory

names/paths and update deprecated utilities/flags. The resulting 200 commands are

grouped into 4 disjoint sets, 3 of which were grounded to custom-designed file systems,

while one set is file-system agnostic. This categorization allows for a comprehensive

evaluation of different command-grounding scenarios.

The InterCode-Bash dataset instructions typically make one or both of the following

two types of requests. It either 1. Requests information that can be answered via

execution output (i.e. ”How many files...”, ”What is the size of...”, ”Where is

<file> stored?”) or 2. Requests a change to the location/configuration/content
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of a file or folder (i.e. ”Move dir1 folder...”, ”Set permissions of...”, ”Append

a line to...”). Therefore, we define a custom reward function that evaluates an

agent’s performance against file system modifications and the latest execution output.

Execution output is graded with a simple lexical similarity function. File system

assessment is done in two parts. First, a comparison of the agent’s and gold command’s

list of file system changes (list of [path, modification type ∈ [added, changed,

deleted]] entries) reveals any extraneous or missing changes. Second, md5sum hashes

of each commonly edited file path are compared to determine if an added or changed

file was altered correctly. A max score of 1 is achieved only if the correct file paths are

changed, the changes are correct, and the latest execution output matches the gold

command output exactly.

InterCode-SQL. We write a Dockerfile that defines a SQL interpreter within a

MySQL database as the task setting. To create the databases and tables necessary for

the task dataset, we write type resolution scripts and perform database conversions

using the sqlite3mysql [307] Python library to adapt the Spider [364] database and

table schema to a MySQL format. We then consolidate all setup code into a single,

unified MySQL .sql dump that contains the complete set of schemas for all tables

across 20 different databases. On container start-up, this file is invoked automatically,

creating and populating databases with tables and tables with records.

The Spider [364] dataset is a large-scale cross-domain dataset originally meant

for evaluating SQL query generations from natural language questions. We adapt

the development set, which contains 1034 task instances, and remove all extraneous

columns aside from the natural language questions and gold SQL command. The

instruction and gold values do not require any additional pre-processing to be

compatible with the MySQL task environment.

Finally, we employ Intersection over Union (IoU ), or more formally the Jaccard

Index, to quantify the correctness of the latest execution output generated by the
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agent against the gold output, where both outputs are a list of records. A non-tabular

execution output receives a reward of 0 by default. Among the items that lie in the

intersection of the agent and gold execution outputs, we also apply a penalty if the

records are in the incorrect order. To quantify how sorted the agent output is relative

to the gold output, we lean on Kendall’s τ and adjust the output range to [0, 1]. The

IoU score is then directly scaled by this coefficient. All in all, only a correctly ordered

list with the exact set of records found in the gold output receives a score of 1.

InterCode-Python. In this setting, we define a Python interpreter running within

an Ubuntu operating System as the task setting. The Dockerfile can be configured to

run any Python version. The interpreter is not initialized with any dependencies, but

PyPI packages can be installed and used by the agent.

We use the MBPP [15] dataset which presents the code completion task of synthe-

sizing Python code from a method header and docstring. Evaluation of correctness is

performed with an associated set of unit tests given by MBPP. The MBPP dataset

is straightforward to adapt to the interactive setting, requiring no modifications to

the query or evaluation components. Finally, we directly inherit MBPP’s evaluation

procedure of proportion of unit tests passed. With InterCode, it is easy to use existing

datasets to evaluate how well models can use different programming languages as

actions.

Validations. To verify the functionality of action execution in the task environ-

ment and the correctness of custom reward functions, we write testing scripts for

both Bash and SQL that pass the gold command in as a dummy agent’s action to

ensure that the command is admissible and executes without error, and to verify

that the reward received by the command is 1. To confirm that InterCode’s dataset

specification is enforced across multiple accepted file formats, we define a custom

InterCode data loader class which is then rigorously unit tested.
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3.4 Methods

We perform preliminary experiments to gauge the proficiency and behavior of current

large language models on interactive coding tasks with Bash and SQL. To observe and

elicit relevant reasoning skills, we draw on several existing prompting strategies that

have been put forth to augment language models’ reasoning and problem-solving skills.

We apply these prompting strategies to models across the following three families:

OpenAI (text-davinci-003, gpt-3.5-turbo, gpt-4), PaLM-2 (text-bison-001,

chat-bison-001) [13], and Open Source (Vicuna-13B [50], StarChat-16B [167]).

Figure 3.2 visualizes the four adjusted prompting strategies we evaluate on Inter-

Code.

Single Turn is a zero-shot attempt. A model is given a simple description of

the task setting and asked to generate code in a specific programming language that

would address the query. The first generation in response to the user’s question is

then evaluated in the InterCode environment.

”Try Again” is an iterative feedback set up. In the initial message, the agent is

informed of the task setting and its interactive nature; an agent has multiple turns to

interact with the system, wherein each turn, upon generating an action, the execution

output of the action is fed back as an observation. This continues until a reward of 1

(task completion) is achieved or the number of turns (n) is exhausted. The agent’s

position in this approach is meant to mirror human software development as closely as

possible. The goal of this method is to probe language models’ raw interactive coding

abilities in addition to illustrating the benefits and different challenges that arise in

interactive coding tasks.

ReAct and Plan & Solve. We write prompts and design workflows that follow

the text and task configurations described in ReAct [360] (which will be detailed in

Chapter 4) and Plan & Solve [316] as faithfully as possible. For these two approaches,

the termination of a task episode is conditioned upon the agent’s own judgment, as
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“Try Again”

Terminate when reward = 1

or exceeds n turns

Up to n

times

Question
What is the country code and first name...

Observation
<std. output, reward>

Agent
<action>

Initial Msg.
You are a SQL code generator helping...

Your task is to interact with a MySQL DB...

ReAct

Terminate when thought chain

finishes or exceeds n turns

Question
What is the country code and first name...

Up to n

timesObservation

<std. output>

Agent
<thought> → <action>

Initial Msg.
Interact with a MySQL DB using SQL to...

Use interleaving Thought, Action, Obs...

Terminate when plan is

completed or


n turns exceeded

Plan & Solve

Question
What is the country code and first name...

Agent
<plan>

Agent
<action>

Observation
<std. output>, <step>

Up to

plan


length

Initial Msg.
[L]et's understand the problem and devise

plan... Then, let's carry out the plan...

Execute Msg.
You will now execute your own plan.

Interact with a MySQL DB using SQL...

Evaluate 
after first 

action

Question
What is the 
country 
code and 
first name...

Action
<action>

Initial Msg.
You are helping a user who is 
trying to do something in a 
MySQL DB. Respond with the 
correct SQL command...

Single Turn

Figure 3.2: Overview of Prompting Strategies adjusted for evaluation on InterCode.
The ”Try Again” termination constraint is conditioned on reward = 1, while Re-
Act [360] and Plan & Solve [316] are determined by the agent itself. This is because
the purpose of the ”Try Again” method is to explore how capable agents are at error
correction from feedback, while the other two are more concerned with the overall
success of general problem-solving strategies.

InterCode-SQL Single Turn Try Again (n = 10)
Model / Hardness Easy Med Hard Extra All Easy Med Hard Extra All

text-davinci-003 20.6 4.9 1.7 0.0 7.4 32.4 14.6 5.2 4.2 15.6
gpt-3.5-turbo 22.6 8.3 5.7 3.6 10.5 72.5 44.3 43.7 21.1 47.3
gpt-4 19.8 7.2 4.6 3.0 9.1 87.5 76.7 66.7 52.4 73.7
text-bison-001 23.8 10.9 5.7 0.6 11.5 27.0 12.3 5.7 0.6 12.9
chat-bison-001 18.5 6.5 4.0 0.0 7.9 22.2 7.8 6.9 0.0 9.9
Vicuna-13B 8.1 1.3 0.6 0.0 2.6 18.9 3.4 1.7 0.0 6.3
StarChat-16B 21.8 7.4 2.9 0.0 8.9 22.3 8.5 2.9 1.2 9.7

Table 3.2: Success Rate for single vs. multi turn evaluation on InterCode-SQL. Query
difficulty is adopted from Spider [364]. Best metrics are in bold.

our goal with these methods is to gauge the transferability to and efficacy of existing

reasoning frameworks with respect to the interactive coding task.
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InterCode-Bash Single Turn Try Again (n = 10)
Model / File System 1 2 3 4 All 1 2 3 4 All

text-davinci-003 10.0 32.1 28.8 33.3 24.6 30.0 52.8 32.2 44.4 38.7
gpt-3.5-turbo 30.0 39.6 33.3 37.0 34.5 45.0 49.1 45.0 48.1 46.5
gpt-4 25.0 37.7 36.7 40.7 34.0 41.7 47.2 51.7 59.2 48.5
text-bison-001 15.0 22.6 11.7 22.2 17.0 23.3 28.3 16.7 22.2 22.5
chat-bison-001 12.1 22.5 16.7 22.2 17.7 13.8 24.5 18.3 22.2 19.2
Vicuna-13B 10.0 24.5 18.3 7.4 16.0 15.0 35.8 25.0 22.2 24.5
StarChat-16B 15.5 22.6 13.3 22.2 17.7 17.2 30.2 21.7 29.6 23.7

Table 3.3: Success Rate across file systems for single vs. multi-turn evaluation on
InterCode-Bash. To evaluate models’ ability to interact with different task settings,
we evaluate disjoint sets of Bash instructions across four different file systems. Best
metrics are in bold.

3.5 Experiments

3.5.1 Base models comparison

Task performances. We first compare the success rate of models in the Single

Turn and Try Again settings for both the InterCode-Bash and SQL datasets. From

Table 3.2 and Table 3.3, we observe that performance across different levels of task

difficulty (SQL) and different file systems (Bash) is superior in the interactive setting

for all models, with a notable multi-fold increase for GPT-4 (9.1%→ 73.7%) on the

InterCode-SQL task.

Analysis of interactions. Manual inspection of trajectory logs indicates that

models actively exercise later turns for discovering relevant context, correcting errors via

execution feedback as observations, and solving problems via iteratively constructing

and editing actions as affirmed by Figure 3.3. In addition, models also demonstrate a

level of planning and modular problem solving; for instructions with gold commands

that chain multiple commands together (i.e. with |, >, or ; in bash) or consist of

multiple sub-problems (i.e. subqueries in SQL), models will use observations from

solving smaller sub-problems in earlier turns to compose the higher-order action.
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Failure cases. With that said, both Figure 3.3 exhibits a plateauing in Success

Rate and and Error %. This suggests that as the amount of context and feedback

builds up, models are less capable of discerning relevant past history toward future

actions. In late-turn scenarios, task episode trajectories often reveal repetition of

earlier actions, a failure to effectively use recent observations towards deciding an

appropriate next action, or an inability to recognize that a current problem-solving

chain of thought is inconclusive or futile. This is particularly evident for hard and

extra level InterCode-SQL task instructions that require context spanning across

several tables and actions that incorporate multiple clauses. We note that even when

the full schema of all tables and their descriptions are offered in addition to the original

instructions, models still benefit greatly from using interaction to experiment with

different JOIN and filtering operators across multiple turns. A larger context window

size, retrieval of useful memory, and more adaptive reasoning paradigms are just a

handful of potential solutions to overcoming such challenges.

3.5.2 Prompting strategy comparison

Initiating language agents with prompting strategies that encourage different forms of

reasoning toward problem-solving improves performance on the interactive coding task

to varying degrees. Table 3.4 presents side-by-side comparisons of the success rate,

number of turns, and error rate per strategy. Compared to Try Again, which lacks

specific guidance on leveraging multiple turns, more explicit reasoning frameworks

such as ReAct and Plan & Solve policies generally achieve higher success rates (SQL:

47.3%→ 58.7%) with fewer turns and a higher rate of admissible commands.

Different tasks present different learning challenges. An important skill

to solving the InterCode-SQL task is the ability to discover context and construct

actions conditionally based on information revealed in prior observations. Given that

InterCode-SQL task instructions are phrased most commonly as questions, adapting
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Figure 3.3: Growth in Success Rate with increase in number of interaction turns across
models configured with Try Again prompting strategy for InterCode-Bash and SQL
tasks.

Try Again (n = 10) ReAct (n = 10) Plan & Solve
SR Turns Error % SR Turns Error % SR Turns Error %

SQL 47.3 7.25 46.4 58.7 5.30 6.94 49.1 4.29 16.2
Bash 46.5 6.15 24.9 20.5 4.40 20.4 28.0 6.65 53.3

Table 3.4: Comparison of different prompting strategies across the entire InterCode-
SQL and InterCode-Bash datasets using gpt-3.5-turbo as the base model. Turns
refers to the average number of turns taken for a single task episode. For Try Again
and ReAct, the max number of turns n = 10. The highest Success Rate, fewest Turns,
and lowest Error % are highlighted per dataset since they reflect more accuracy and
efficient task solving. Best metrics are in bold.

64



to the task setting and new information discovered along the way puts more emphasis

on error correction and context discovery. On the other hand, the more declarative

and multi-step nature of the InterCode-Bash task instructions is more aptly solved by

planning and modular task completion. These distinctions manifest in the Plan & Solve

strategy’s performance gap between the InterCode-SQL and InterCode-Bash tasks;

while Plan & Solve encourages a model to decompose problems into more manageable

steps, the strategy is less favorable towards adjusting on the fly in response to execution

feedback.

More adaptive reasoning is favorable. Compared to ”imperative” reasoning

paradigms such as Plan & Solve which prescribe a relatively rigid procedure, more

flexible frameworks like ReAct, which do not enforce any particular logical formula

or roadmap, are more conducive to eliciting a broader set of reasoning capabilities.

However, while ReAct’s performance is generally superior to Plan & Solve, tasks

solved by both strategies with gpt-3.5-turbo make up 57% (407/708) and 27.6%

(21/76) of the union of all successfully solved InterCode-SQL and InterCode-Bash

tasks respectively. This discrepancy highlights a trade-off between the guidance and

structural constraints that are inherent to prompting strategies; schemes that draw out

specific reasoning patterns often overlook other equally useful capabilities. InterCode’s

interactive coding task can serve as a strong litmus test toward more adaptable,

variegated model reasoning.

InterCode’s task formulation, modular design, flexible task construction, and use

of virtual containers enable task designers to manifest new, complex, code-driven

tasks, where completion is much more attainable through interaction. We draw

inspiration from Capture the Flag (CTF) [58], a competitive cybersecurity game

that requires expertise in coding, cryptography (i.e. binary exploitation, forensics),

reverse engineering, and recognizing security vulnerabilities to accomplish the primary

objective of discovering encrypted ”flags” concealed within code snippets or file systems.
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Task
Challenge Description

Flag

: You should utilize the 'dds2-alpine.flag.img.gz' 

image. All we know is the file with the flag is named  
`down-at-the-bottom.txt`. The 'sleuthkit' tools can be used for help.


: picoCTF{f0r3ns1c4t0r_n0v1c3_f5565e7b}

Agent
/bin/bash -c "gunzip dds2-alpine.flag.img.gz"

Bash
dds2-alpine.flag.img: DOS/MBR  
: ID=0x83, active, start-CHS (0x0,32,33), end-CHS 
(0x10,81,1), startsector 2048, 260096 sectors

boot sector; partition 1

Agent
apt-get install sleuthkit

Bash
Reading package lists...\nBuilding dependency tree...\nReading 
state information...\nsleuthkit is already the newest version 
(4.11.1+dfsg-1).\n0 upgraded, 0 newly installed, 0 to remove and 0 
not upgraded.

Agent
mmls dds2-alpine.flag.img

Bash
DOS Partition Table 
Offset Sector: 0 
Units are in 512-byte sectors 
Slot Start End Length Description 
000: Meta 0000000000 0000000000 0000000001 Primary Table (#0) 
001: ------- 0000000000 0000002047 0000002048 Unallocated 
002: 000:000  0000262143 0000260096  (0x83)0000002048 Linux

Agent
fls -o 2048 -r -p dds2-alpine.flag.img | grep down-at-the-bottom.txt

Bash
r/r :  root/down-at-the-bottom.txt18291

Agent
icat -o 2048 dds2-alpine.flag.img 18291

Bash
<flag in visual form>

Agent
submit picoCTF{f0r3ns1c4t0r_n0v1c3_f5565e7b}

Bash
The submitted flag is correct

Figure 3.4: GPT-4’s interaction trajectory for a binary exploitation CTF task. This
requires proficiency in Bash and Python, among additional knowledge and reasoning.
Orange text and arrows highlight the feedback that the model attends to in generating
the next action. In last step, agent submits flag.

Compared to InterCode-Bash & -SQL, CTF is much more complicated, requiring an

agent to exercise knowledge of multiple coding languages, modularize a higher-order

objective into sub-problems, construct multi-step plans towards solving each problem,

and adjust strategy when a plan fails to yield any useful insights.

We establish InterCode-CTF, a new dataset consisting of 100 CTF objectives from

picoCTF [309]. Following the interactive coding task formulation, each task instance

in InterCode-CTF is given as a <instruction, assets, hidden flag> tuple. We

first construct a Bourne Shell within an Ubuntu OS as the task environment. Here,

InterCode’s use of virtual containers is crucial, as necessary actions can be irreversibly

damaging on real systems (i.e. rm -rf, sudo access). Per task instance, the associated

assets (e.g., images, executables, code), necessary for task completion, are copied

into the OS file system. Given this setting, a task worker must understand the

given material and investigate the assets to develop potential solutions. Executing

a successful approach must be done across multiple steps with various conditionals,

where the execution feedback of a prior step could have a significant effect on the next

step. Figure 3.4 spotlights the diverse skills needed for CTF.
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3.6 Towards More Challenging and Practical Code

Interaction

InterCode opens up the general paradigm of solving code-based problems in interactive

settings with execution feedback. Under this paradigm, we can study more challenging

and practical problems beyond traditional coding datasets. In particular, we can

benchmark code interaction based on real-world problems for two representative groups

that code, competitive programmers and software engineers.

3.6.1 USACO: Towards Olympiad-level programming

✍ I/O Format

🧩 Problem

     🐮 🐄 🐄 🐮
Cow    1        2      3       4 

Key:
🐮 Guernsey
🐄 Holstein

     🐮 🐄 
       1      2 

     🐄 
       3 

     🐮 
      4 

🐄  🐄 🐮
 2      3    4

Only one possible leader pair:
● Cow 2’s list has all cows of its breed (🐄)
● Cow 1’s list has the other breed’s leader (cow 2) 

📖 Example

Figure 3.5: Example USACO problem description, formatting instructions, and
illustration (problem id: 1275 bronze leaders). Solving this problem requires a
combination of grounded reasoning about the concept of leaders, creative thinking to
precisely count different cases of leader pairs, and algorithmic reasoning to perform
these ad hoc operations in linear time.

Computing Olympiads contain some of the most challenging problems for humans,

requiring complex algorithmic reasoning, puzzle solving, in addition to generating

efficient code. However, it has been understudied as a domain to evaluate language
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models (LMs). We introduce the USACO benchmark with 307 problems from the USA

Computing Olympiad, along with high-quality unit tests, reference code, and official

analyses for each problem. These resources enable us to construct and test a range of

LM inference methods for competitive programming for the first time. We find GPT-4

only achieves a 8.7% pass@1 accuracy with zero-shot chain-of-thought prompting, and

our best inference method improves it to 20.2% using a combination of self-reflection

and retrieval over episodic knowledge. However, this is far from solving the benchmark,

and new models or techniques for interactive coding are clearly needed.

To better understand the remaining challenges, we design a novel human-in-the-

loop study and surprisingly find that a small number of targeted hints enable GPT-4

to solve 13 out of 15 problems previously unsolvable by any model and method. Our

benchmark, baseline methods, quantitative results, and qualitative analysis serve as

an initial step toward LMs with grounded, creative, and algorithmic reasoning.

More details can be seen in [274].

3.6.2 SWE-bench: Towards solving real-world GitHub issues

euclidean_diff

matrix_transform

dstack_struct_col

vstack_struct_col

join_struct_col

Pre PR Post PR Tests

Unit Tests
data leak in GBDT due to warm

start (This is about the non-

histogram-based version of...

Issue

Codebase
sklearn/

examples/ setup.cfg

setup.pyREADME.rst

reqs.txt

 Language Model

Generated PR

sklearn

gradient_boosting.py

utils

helper.py

+20 -12

Figure 3.6: SWE-bench sources task instances from real-world Python repositories by
connecting GitHub issues to merged pull request solutions that resolve related tests.
Provided with the issue text and a codebase snapshot, models generate a patch that
is evaluated against real tests.

Real-world software engineering can be a rich, sustainable, and challenging testbed

for evaluating the next generation of language models for code interaction, and offer

complementary challenges to Olympiad programming. We therefore introduce SWE-

68



bench, an evaluation framework including 2294 software engineering problems drawn

from real GitHub issues and corresponding pull requests across 12 popular Python

repositories. Given a codebase along with a description of an issue to be resolved, a

language model is tasked with editing the codebase to address the issue. Resolving

issues in SWE-bench frequently requires understanding and coordinating changes

across multiple functions, classes, and even files simultaneously, calling for models to

interact with execution environments, process extremely long contexts and perform

complex reasoning that goes far beyond traditional code generation. Claude 2 and

GPT-4 solve a mere 4.8% and 1.7% of instances respectively, even when provided with

an oracle retriever, clearly calling for new methodology. More details can be seen in

[129].

3.6.3 DevBench: Towards comprehensive software develop-

ment

Programming Languages

 Pytho
 C/C+
 Jav
 JavaScript (Vue.js)

Domains (Engineering)

 Database Applicatio
 Web Service
 Algorithm Implementatio
 API Development

Domains (AI)

 Neural Network
 Computer Visio
 Natural Language Processing

Software

Design

Plan codebase

with UML

Diagrams

Implement

Write project

code that


follows designs

Environment

Setup

Define an

executable


environment

Testing

Verify with

acceptance,

unit testing

Complete

Codebase

Product

Requirements


Document

Figure 3.7: DevBench features multiple stages of software development, including
software design, environment setup, implementation, and testing (both acceptance
and unit testing).

Single-file code generation or repository issue debugging do not measure the full

spectrum of challenges raised by real-world programming activities. To this end, we

propose DevBench, a comprehensive benchmark that evaluates LLMs across various

stages of the software development lifecycle, including software design, environment
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setup, implementation, acceptance testing, and unit testing. DevBench features a

wide range of programming languages and domains, high-quality data collection, and

carefully designed and verified metrics for each task. Empirical studies show that

current LLMs, including GPT-4-Turbo, fail to solve the challenges presented within

DevBench. Analyses reveal that models struggle with understanding the complex

structures in the repository, managing the compilation process, and grasping advanced

programming concepts. More details can be seen in [164].

3.7 Discussion

We have developed InterCode, a novel lightweight framework that facilitates interaction

between language models and the underlying environment, enabling them to mimic

the human approach to language-to-code generation. Our framework has shown

promising results when applied to state-of-the-art models using different prompting

styles. It effectively leverages the capabilities of LMs to break down complex tasks

and recover from errors within a secure and isolated environment. The ability to

seamlessly convert existing datasets into the interactive format using InterCodeEnv

API, and furthermore, the Bash and SQL environments, empowers task designers to

construct new tasks to unlock the plethora of challenges that await in the space of

interactive coding.

Leveraging the paradigm of interactive coding, we have also proposed several

benchmarks (USACO, SWE-bench, DevBench) with more challenging and practical

coding problems than traditional coding datasets. LMs clearly cannot solve these

in a sequence-to-sequence setup, which motivates the next part of the thesis that

constructs language agents to interactively reason and act.
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Part II

Methods
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Chapter 4

ReAct: Building Agents that

Reason to Act

4.1 Introduction

In Part I of the thesis, we have introduced a set of digital automation problems for

autonomous agents, such as web browsing, interactive coding, and software engineering.

In contrast to traditional agent benchmarks such as video games or robotics simulations,

they present direct and tremendous practical values, and the key challenge of decision-

making in open-ended and complex real-world environments. We have shown that

traditional imitation or reinforcement learning approaches, or standard LLM-based

approaches, do not work well on digital automation tasks like WebShop or SWE-bench.

In Part II of the thesis, we establish the methodological foundation of a new type of

AI agents that we term “language agents”, which perform language reasoning to act.

Why reasoning to act? A unique feature of human intelligence is the ability to

seamlessly combine task-oriented actions with verbal reasoning (or inner speech, 10),

which has been theorized to play an important role in human cognition for enabling

self-regulation or strategization [312, 192, 81] and maintaining a working memory [16].
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Consider the example of cooking up a dish in the kitchen. Between any two specific

actions, we may reason in language in order to track progress (“now that everything

is cut, I should heat up the pot of water”), to handle exceptions or adjust the plan

according to the situation (“I don’t have salt, so let me use soy sauce and pepper

instead”), and to realize when external information is needed (“how do I prepare

dough? Let me search on the Internet”). We may also act (open a cookbook to

read the recipe, open the fridge, check ingredients) to support the reasoning and to

answer questions (“What dish can I make right now?”). This tight synergy between

“acting” and “reasoning” allows humans to learn new tasks quickly and perform robust

decision making or reasoning, even under previously unseen circumstances or facing

information uncertainties.

Recent results have hinted at the possibility of combining verbal reasoning with

interactive decision making in autonomous systems. On one hand, properly prompted

large language models (LLMs) have demonstrated emergent capabilities to carry

out several steps of reasoning traces to derive answers from questions in arithmetic,

commonsense, and symbolic reasoning tasks [332]. However, this “chain-of-thought”

reasoning is a static black box, in that the model uses its own internal representations

to generate thoughts and is not grounded in the external world, which limits its

ability to reason reactively or update its knowledge. This can lead to issues like fact

hallucination and error propagation over the reasoning process (Figure 4.1 (1b)). On

the other hand, recent work has explored the use of pre-trained language models for

planning and acting in interactive environments [7, 209, 356, 119], with a focus on

predicting actions via language priors. These approaches usually convert multi-modal

observations into text, use a language model to generate domain-specific actions or

plans, and then use a controller to choose or execute them. However, they do not

employ language models to reason abstractly about high-level goals or maintain a

working memory to support acting, barring [120] who perform a limited form of
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Figure 4.1: (1) Comparison of 4 prompting methods, (a) Standard, (b) Chain-of-
thought (CoT, Reason Only), (c) Act-only, and (d) ReAct (Reason+Act), solving a
HotpotQA [351] question. (2) Comparison of (a) Act-only and (b) ReAct prompting
to solve an AlfWorld [278] game. In both domains, we omit in-context examples in
the prompt, and only show task solving trajectories generated by the model (Act,
Thought) and the environment (Obs).

verbal reasoning to reiterate spatial facts about the current state. Beyond such simple

embodied tasks to interact with a few blocks, there have not been studies on how

reasoning and acting can be combined in a synergistic manner for general task solving,

and if such a combination can bring systematic benefits compared to reasoning or

acting alone.

In this work, we present ReAct, a general paradigm to combine reasoning and acting

with language models for solving diverse language reasoning and decision making
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tasks (Figure 4.1). ReAct prompts LLMs to generate both verbal reasoning traces

and actions pertaining to a task in an interleaved manner, which allows the model to

perform dynamic reasoning to create, maintain, and adjust high-level plans for acting

(reason to act), while also interact with the external environments (e.g. Wikipedia) to

incorporate additional information into reasoning (act to reason).

We conduct empirical evaluations of ReAct and state-of-the-art baselines on four

diverse benchmarks: question answering (HotPotQA, 351), fact verification (Fever,

304), text-based game (ALFWorld, 278), and webpage navigation (WebShop, 352). For

HotPotQA and Fever, with access to a Wikipedia API that the model can interact with,

ReAct outperforms vanilla action generation models while being competitive with chain-

of-thought reasoning (CoT) [332]. The best approach overall is a combination of ReAct

and CoT that allows for the use of both internal knowledge and externally obtained

information during reasoning. On ALFWorld and WebShop, two or even one-shot

ReAct prompting is able to outperform imitation or reinforcement learning methods

trained with 103 ∼ 105 task instances, with an absolute improvement of 34% and 10%

in success rates respectively. We also demonstrate the importance of sparse, versatile

reasoning in decision making by showing consistent advantages over controlled baselines

with actions only. Besides general applicability and performance boost, the combination

of reasoning and acting also contributes to model interpretability, trustworthiness, and

diagnosability across all domains, as humans can readily distinguish information from

model’s internal knowledge versus external environments, as well as inspect reasoning

traces to understand the decision basis of model actions.

To summarize, our key contributions are the following: (1) we introduce ReAct, a

novel prompt-based paradigm to synergize reasoning and acting in language models for

general task solving; (2) we perform extensive experiments across diverse benchmarks to

showcase the advantage of ReAct in a few-shot learning setup over prior approaches that

perform either reasoning or action generation in isolation; (3) we present systematic
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ablations and analysis to understand the importance of acting in reasoning tasks,

and reasoning in interactive tasks; (4) we analyze the limitations of ReAct under

the prompting setup (i.e. limited support of reasoning and acting behaviors), and

perform initial finetuning experiments showing the potential of ReAct to improve with

additional training data. Scaling up ReAct to train and operate on more tasks and

combining it with complementary paradigms like reinforcement learning could further

unlock the potential of large language models.

4.2 Related Work

Language model for reasoning. Perhaps the most well-known work of using LLMs

for reasoning is Chain-of-Thought (CoT) [332], which reveals the ability of LLMs to

formulate their own “thinking procedure” for problem solving. Several follow-up works

have since been performed, including least-to-most prompting for solving complicated

tasks [380], zero-shot-CoT [142], and reasoning with self-consistency [323]. Recently,

[197] systematically studied the formulation and structure of CoT, and observed that

the presence of symbols, patterns and texts is crucial to the effectiveness of CoT. Other

work has also been extended to more sophisticated reasoning architecture beyond simple

prompting. For example Selection-Inference [60] divides the reasoning process into

two steps of “selection” and “inference”. STaR [367] bootstraps the reasoning process

by finetuning the model on correct rationales generated by the model itself. Faithful

reasoning [59] decomposes multi-step reasoning into three steps, each performed by a

dedicated LM respectively. Similar approaches like Scratchpad [234], which finetunes a

LM on intermediate computation steps, also demonstrate improvement on multi-step

computation problems. In contrast to these methods, ReAct performs more than

just isolated, fixed reasoning, and integrates model actions and their corresponding
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observations into a coherent stream of inputs for the model to reason more accurately

and tackle tasks beyond reasoning (e.g. interactive decision making).

Language model for decision making. The strong capability of LLMs has

enabled them to perform tasks beyond language generation, and it is becoming more

popular to take advantage of LLMs as a policy model for decision making, especially

in interactive environments. WebGPT [209] uses an LM to interact with web browsers,

navigate through web pages, and infer answers to complicated questions from ELI5

[78]. In comparison to ReAct, WebGPT does not explicitly model the thinking and

reasoning procedure, instead rely on expensive human feedback for reinforcement

learning. In conversation modeling, chatbots like BlenderBot [280] and Sparrow [90]

and task-oriented dialogue systems like SimpleTOD [114] also train LMs to make

decision about API calls. Unlike ReAct, they do not explicitly consider the reasoning

procedure either, and also relies on expensive datasets and human feedback collections

for policy learning. In contrast, ReAct learns a policy in a much cheaper way, since the

decision making process only requires language description of the reasoning procedure.1

LLMS have also been increasingly employed in interactive and embodied envi-

ronments for planning and decision making. Perhaps most relevant to ReAct in

this respect are SayCan [7] and Inner Monologue [120], which use LLMs for robotic

action planning and decision making. In SayCan, LLMs were prompted to directly

predict possible actions a robot can take, which is then reranked by an affordance

model grounded on the visual environments for final prediction. Inner Monologue

made further improvements by adding the eponymous “inner monologue”, which is

implemented as injected feedback from the environment. To our knowledge, Inner

Monologue is the first work that demonstrates such a closed-loop system, which ReAct

builds on. However, we argue that Inner Monologue does not truly comprise of inner

1Human feedback can also be incorporated in a complementary manner but we leave it for future
work.
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thoughts — this is elaborated in Section 4.5. We also note that leveraging language as

semantically-rich inputs in the process of interactive decision making has been shown

to be successful under other settings [1, 136, 119, 168]. It is becoming more evident

that with the help of LLMs, language as a fundamental cognitive mechanism will play

a critical role in interaction and decision making. What is more, progress in LLMs

has also inspired the development of versatile and generalist agents like [260].

4.3 ReAct: Synergizing Reasoning and Acting

Consider a general setup of an agent interacting with an environment for task solving.

At time step t, an agent receives an observation ot ∈ O from the environment and takes

an action at ∈ A following some policy π(at|ct), where ct = (o1, a1, · · · , ot−1, at−1, ot)

is the context to the agent. Learning a policy is challenging when the mapping ct 7→ at

is highly implicit and requires extensive computation. For example, the agent shown

in Figure 4.1(1c) is unable to generate the correct final action (Act 4) to finish the

QA task as it requires complex reasoning over the trajectory context (Question, Act

1-3, Obs 1-3). Similarly, the agent shown in Figure 4.1(2a) fails to comprehend from

the context that sinkbasin 1 does not contain peppershaker 1, thus keep producing

hallucinating actions.

The idea of ReAct is simple: we augment the agent’s action space to Â = A ∪ L,

where L is the space of language. An action ât ∈ L in the language space, which we

will refer to as a thought or a reasoning trace, does not affect the external environment,

thus leading to no observation feedback. Instead, a thought ât aims to compose

useful information by reasoning over the current context ct, and update the context

ct+1 = (ct, ât) to support future reasoning or acting. As shown in Figure 4.1, there

could be various types of useful thoughts, e.g. decomposing task goals and create

action plans (2b, Act 1; 1d, Thought 1), injecting commonsense knowledge relevant to
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task solving (2b, Act 1), extracting important parts from observations (1d, Thought2,

4), track progress and transit action plans (2b, Act 8), handle exceptions and adjust

action plans (1d, Thought 3), and so on.

However, as the language space L is unlimited, learning in this augmented action

space is difficult and requires strong language priors. Here, we mainly focus on the

setup where a frozen large language model, PaLM-540B [52], is prompted with few-shot

in-context examples to generate both domain-specific actions and free-form language

thoughts for task solving (Figure 4.1 (1d), (2b)). Each in-context example is a human

trajectory of actions, thoughts, and environment observations to solve a task instance.

For the tasks where reasoning is of primary importance (Figure 4.1(1)), we alternate

the generation of thoughts and actions so that the task-solving trajectory consists of

multiple thought-action-observation steps. In contrast, for decision making tasks that

potentially involve a large number of actions (Figure 4.1(2)), thoughts only need to

appear sparsely in the most relevant positions of a trajectory, so we let the language

model decide the asynchronous occurrence of thoughts and actions for itself.

Since decision making and reasoning capabilities are integrated into a large language

model, ReAct enjoys several unique features: A) Intuitive and easy to design:

Designing ReAct prompts is straightforward as human annotators just type down their

thoughts in language on top of their actions taken. No ad-hoc format choice, thought

design, or example selection is used here. B) General and flexible: Due to the

flexible thought space and thought-action occurrence format, ReAct works for diverse

tasks with distinct action spaces and reasoning needs, including but not limited to

QA, fact verification, text game, and web navigation. C) Performant and robust:

ReAct shows strong generalization to new task instances while learning solely from one

to six in-context examples, consistently outperforming baselines with only reasoning or

acting across different domains. We also show in Section 4.4 additional benefits when

finetuning is enabled, and in Section 4.5 how ReAct performance is robust to prompt
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selections. D) Human aligned and controllable: ReAct promises an interpretable

sequential decision making and reasoning process where humans can easily inspect

reasoning and factual correctness.

4.4 Experiments: Knowledge-Intensive Reasoning

We begin with knowledge-intensive reasoning tasks like multi-hop question answering

and fact verification. As shown in Figure 4.1(1d), by interacting with a Wikipedia API,

ReAct is able to retrieve information to support reasoning, while also use reasoning

to target what to retrieve next, demonstrating a synergy of reasoning and acting.

4.4.1 Setup

Domains. We consider two datasets challenging knowledge retrieval and reasoning:

(1) HotPotQA [351], a multi-hop question answering benchmark that requires reasoning

over two or more Wikipedia passages, and (2) FEVER [304], a fact verification

benchmark where each claim is annotated SUPPORTS, REFUTES, or NOT ENOUGH

INFO, based on if there exists a Wikipedia passage to verify the claim. In this work,

we operate in a question-only setup for both tasks, where models only receive the

question/claim as input without access to support paragraphs, and have to rely on their

internal knowledge or retrieve knowledge via interacting with an external environment

to support reasoning.

Action Space. We design a simple Wikipedia web API with three types of actions

to support interactive information retrieval: (1) search[entity], which returns the

first 5 sentences from the corresponding entity wiki page if it exists, or else suggests

top-5 similar entities from the Wikipedia search engine, (2) lookup[string], which

would return the next sentence in the page containing string, simulating Ctrl+F
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functionality on the browser. (3) finish[answer], which would finish the current

task with answer. We note that this action space mostly can only retrieve a small

part of a passage based on exact passage name, which is significantly weaker than

state-of-the-art lexical or neural retrievers. The purpose is to simulate how humans

would interact with Wikipedia, and force models to retrieve via explicit reasoning in

language.

4.4.2 Methods

ReAct Prompting. For HotpotQA and Fever, we randomly select 6 and 3 cases2

from the training set and manually compose ReAct-format trajectories to use as

few-shot exemplars in the prompts. Similar to Figure 4.1(d), each trajectory consists

of multiple thought-action-observation steps (i.e. dense thought), where free-form

thoughts are used for various purposes. Specifically, we use a combination of thoughts

that decompose questions (“I need to search x, find y, then find z”), extract information

from Wikipedia observations (“x was started in 1844”, “The paragraph does not tell

x”), perform commonsense (“x is not y, so z must instead be...”) or arithmetic

reasoning (“1844 ¡ 1989”), guide search reformulation (“maybe I can search/look up x

instead”), and synthesize the final answer (“...so the answer is x”).

Baselines. We systematically ablate ReAct trajectories to build prompts for multiple

baselines (with formats as Figure 4.1(1a-1c)): (a) Standard prompting (Standard),

which removes all thoughts, actions, observations in ReAct trajectories. (b) Chain-of-

thought prompting (CoT) [332], which removes actions and observations and serve as

a reasoning-only baseline. We also build a self-consistency baseline (CoT-SC) [323, 324]

by sampling 21 CoT trajectories with decoding temperature 0.7 during inference and

adopting the majority answer, which is found to consistently boost performance over

2We find more examples do not improve performance.
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CoT. (c) Acting-only prompt (Act), which removes thoughts in ReAct trajectories,

loosely resembling how WebGPT [209] interacts with the Internet to answer questions,

though it operates on a different task and action space, and uses imitation and

reinforcement learning instead of prompting.

Combining Internal and External Knowledge. As will be detail in Section 4.4.3,

we observe that the problem solving process demonstrated by ReAct is more factual

and grounded, whereas CoT is more accurate in formulating reasoning structure

but can easily suffer from hallucinated facts or thoughts. We therefore propose to

incorporate ReAct and CoT-SC, and let the model decide when to switch to the other

method based on the following heuristics: A) ReAct → CoT-SC: when ReAct fails

to return an answer within given steps, back off to CoT-SC. We set 7 and 5 steps for

HotpotQA and FEVER respectively as we find more steps will not improve ReAct

performance3. B) CoT-SC → ReAct: when the majority answer among n CoT-SC

samples occurs less than n/2 times (i.e. internal knowledge might not support the task

confidently), back off to ReAct.

Finetuning. Due to the challenge of manually annotating reasoning traces and

actions at scale, we consider a bootstraping approach similar to [367], using 3,000

trajectories with correct answers generated by ReAct (also for other baselines) to

finetune smaller language models (PaLM-8/62B) to decode trajectories (all thoughts,

actions, observations) conditioned on input questions/claims.

4.4.3 Results and observations

ReAct outperforms Act consistently. Table 4.1 shows HotpotQA and Fever

results using PaLM-540B as the base model with different prompting methods. We

3Of all trajectories with correct final answers, those with 7 steps on HotpotQA and 5 steps on
FEVER only take up 0.84% and 1.33% respectively.
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Prompting methoda HotpotQA Fever
(EM) (Acc)

Standard 28.7 57.1
CoT [332] 29.4 56.3
CoT-SC [323] 33.4 60.4

Act 25.7 58.9
ReAct 27.4 60.9
CoT-SC → ReAct 34.2 64.6
ReAct→ CoT-SC 35.1 62.0

Supervised SoTA [387, 162] 67.5 89.5

Table 4.1: PaLM-540B Re-
sults on HotpotQA and Fever.

a
HotpotQA EM is 27.1, 28.9, 33.8 for

Standard, CoT, CoT-SC in [324].
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Figure 4.2: PaLM-540B prompting results with re-
spect to number of CoT-SC samples used.

Type Definition ReAct CoT

Success
True positive Correct reasoning trace and facts 94% 86%
False positive Hallucinated reasoning trace or facts 6% 14%

Failure

Reasoning error Wrong reasoning trace or repetitive failure 47% 16%
Search result error Search return empty or does not contain useful information 23% -

Hallucination Hallucinated reasoning trace or facts 0% 56%
Label ambiguity Right prediction but did not match the label precisely 29% 28%

Table 4.2: Types of success and failure modes of ReAct and CoT on HotpotQA, as
well as their percentages in randomly selected examples studied by human.

note that ReAct is better than Act on both tasks, demonstrating the value of reasoning

to guide acting, especially for synthesizing the final answer, as shown in Figure 4.1

(1c-d). Fine-tuning results 4.3 also confirm the benefit of reasoning traces for more

informed acting.

ReAct vs. CoT. On the other hand, ReAct outperforms CoT on Fever (60.9

vs. 56.3) and slightly lags behind CoT on HotpotQA (27.4 vs. 29.4). Fever claims for

SUPPORTS/REFUTES might only differ by a slight amount, so acting to retrieve

accurate and up-to-date knowledge is vital. To better understand the behavioral

difference between ReAct and CoT on HotpotQA, we randomly sampled 50 trajectories

with correct and incorrect answers (judged by EM) from ReAct and CoT respectively

(thus 200 examples in total), and manually labeled their success and failure modes in

Table 4.2. Some key observations are as follows:
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A) Hallucination is a serious problem for CoT, resulting in much higher

false positive rate than ReAct (14% vs. 6%) in success mode, and make up its major

failure mode (56%). In contrast, the problem solving trajectory of ReActis more

grounded, fact-driven, and trustworthy, thanks to the access of an external knowledge

base.

B) While interleaving reasoning, action and observation steps improves

ReAct’s groundedness and trustworthiness, such a structural constraint

also reduces its flexibility in formulating reasoning steps, leading to more

reasoning error rate than CoT. we note that there is one frequent error pattern specific

to ReAct, in which the model repetitively generates the previous thoughts and actions,

and we categorize it as part of “reasoning error” as the model fails to reason about

what the proper next action to take and jump out of the loop4.

C) For ReAct, successfully retrieving informative knowledge via search

is critical. Non-informative search, which counts for 23% of the error cases, derails

the model reasoning and gives it a hard time to recover and reformulate thoughts. This

is perhaps an expected trade-off between factuality and flexibility, which motivates

our proposed strategies of combining two methods.

ReAct + CoT-SC perform best for prompting LLMs. Also shown in Table 4.1,

the best prompting method on HotpotQA and Fever are ReAct → CoT-SC and

CoT-SC → ReAct respectively. Furthermore, Figure 4.2 shows how different methods

perform with respect to the number of CoT-SC samples used. While two ReAct +

CoT-SC methods are advantageous at one task each, they both significantly and

consistently outperform CoT-SC across different number of samples, reaching CoT-SC

performance with 21 samples using merely 3-5 samples. These results indicate the

4We suspect that this could be due to the sub-optimal greedy decoding procedure, and future
work using better decoding (e.g. beam search) might help address this issue.

84



8b 62b 540b
size

0

5

10

15

20

25

30
Ho

tp
ot

QA
 E

M

learning = prompt

8b 62b 540b
size

learning = finetune

Method
Standard
CoT
Act
ReAct

Figure 4.3: Scaling results for prompting and finetuning on HotPotQA with ReAct
(ours) and baselines.

value of properly combining model internal knowledge and external knowledge for

reasoning tasks.

ReAct performs best for fine-tuning. Figure 4.3 shows the scaling effect of

prompting/finetuning four methods (Standard, CoT, Act, ReAct) on HotpotQA.

With PaLM-8/62B, prompting ReAct performs worst among four methods due to the

difficulty to learn both reasoning and acting from in-context examples. However, when

finetuned with just 3,000 examples, ReAct becomes the best method among the four,

with PaLM-8B finetuned ReAct outperforming all PaLM-62B prompting methods, and

PaLM-62B finetuned ReAct outperforming all 540B prompting methods. In contrast,

finetuning Standard or CoT is significantly worse than finetuning ReAct or Act for

both PaLM-8/62B, as the former essentially teaches models to memorize (potentially

halluincated) knowledge facts, and the latter teaches models how to (reason and)

act to access information from Wikipedia, a more generalizable skill for knowledge

reasoning. As all prompting methods are still significantly far from domain-specific

state-of-the-art approaches (Table 4.1), we believe finetuning with more human-written

data might be a better way to unleash the power of ReAct.
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4.5 Experiments: Sequential Decision Making

We also test ReAct on two language-based interactive decision-making tasks, ALF-

World and WebShop, both of which feature complex environments that require agents

to act over long horizons with sparse rewards, warranting the need for reasoning to

act and explore effectively.

ALFWorld. ALFWorld [278] (Figure 4.1(2)) is a synthetic text-based game designed

to align with the embodied ALFRED benchmark [277]. It includes 6 types of tasks in

which an agent needs to achieve a high-level goal (e.g. examine paper under desklamp)

by navigating and interacting with a simulated household via text actions (e.g. go

to coffeetable 1, take paper 2, use desklamp 1). A task instance can have more than

50 locations and take an expert policy more than 50 steps to solve, thus challenging

an agent to plan and track subgoals, as well as explore systematically (e.g. check all

desks one by one for desklamp). In particular, one challenge built into ALFWorld is

the need to determine likely locations for common household items (e.g. desklamps

will likely be on desks, shelfs, or dressers), making this environment a good fit for

LLMs to exploit their pretrained commonsense knowledge. To prompt ReAct, we

randomly annotate three trajectories from the training set for each task type, where

each trajectory includes sparse thoughts that (1) decompose the goal, (2) track subgoal

completion, (3) determine the next subgoal, and (4) reason via commonsense where

to find an object and what to do with it.

Following [278], we evaluate on 134 unseen evaluation games in a task-specific setup.

For robustness, we construct 6 prompts for each task type through each permutation

of 2 annotated trajectories from the 3 we annotate. Act prompts are constructed

using the same trajectories, but without thoughts — since task instances are randomly

chosen from the training set, it favors neither ReAct nor Act and provides a fair and

controlled comparison to test the importance of sparse thoughts. For baselines, we

86



use BUTLER [278], an imitation learning agent trained on 105 expert trajectories for

each task type5.

WebShop. Can ReAct also interact with noisy real-world language environments

for practical applications? We investigate WebShop [352], a recently proposed online

shopping website environment with 1.18M real-world products and 12k human instruc-

tions (detailed in Chapter 2). Unlike ALFWorld, Webshop contains a high variety

of structured and unstructured texts (e.g. product titles, descriptions, and options

crawled from Amazon), and requires an agent to purchase a product based on a user

instruction (e.g. “I am looking for a nightstand with drawers. It should have a nickel

finish, and priced lower than $140”) through web interactions (e.g. search “nightstand

drawers”, choose buttons such as “color: modern-nickel-white” or “back to search”).

This task is evaluated by average score (percentage of desired attributes covered by the

chosen product averaged across all episodes) and success rate (percentage of episodes

where the chosen product satisfies all requirements) on 500 test instructions. We

formulate Act prompts with actions to search, choose product, choose options, and

buy, with ReAct prompts additionally reasoning to determine what to explore, when

to buy, and what products options are relevant to the instruction. We compare to

an imitation learning (IL) method trained with 1,012 human annotated trajectories,

and a imitation + reinforcement learning (IL + RL) method additionally trained with

10,587 training instructions.

Results. ReAct outperforms Act on both ALFWorld (Table 4.3) and Webshop

(Table 4.4). On ALFWorld, the best ReAct trial achieves an average success rate of

71%, significantly outperforming the best Act (45%) and BUTLER (37%) trials. In

fact, even the worse ReAct trial (48%) beats the best trial of both methods. Moreover,

5[204] finetuned a GPT-2 model on 3553 task instances and achieved a much improved performance
than BUTLER, but it is trained on all task types, thus not included as a baseline.
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Method Pick Clean Heat Cool Look Pick 2 All

Act (best of 6) 88 42 74 67 72 41 45
ReAct (avg) 65 39 83 76 55 24 57
ReAct (best of 6) 92 58 96 86 78 41 71

ReAct-IM (avg) 55 59 60 55 23 24 48
ReAct-IM (best of 6) 62 68 87 57 39 33 53

BUTLERg (best of 8) 33 26 70 76 17 12 22
BUTLER (best of 8) 46 39 74 100 22 24 37

Table 4.3: AlfWorld task-specific success rates (%). BUT-
LER and BUTLERg results are from Table 4 of [278]. All
methods use greedy decoding, except that BUTLER uses
beam search.

Method Score SR

Act 62.3 30.1
ReAct 66.6 40.0

IL 59.9 29.1
IL+RL 62.4 28.7

Human
82.1 59.6

Expert

Table 4.4: Score
and success rate
(SR) on Webshop.
IL/IL+RL taken
from [352].

the advantage of ReAct over Act is consistent across six controlled trials, with relative

performance gain ranging from 33% to 90% and averaging 62%. Qualitatively, we saw

that, without any thoughts at all, Act fails to correctly decompose goals into smaller

subgoals, or loses track of the current state of the environment.

On Webshop, one-shot Act prompting already performs on par with IL and

IL+RL methods. With additional sparse reasoning, ReAct achieves significantly better

performance, with an absolute 10% improvement over the previous best success rate.

By checking examples, we find that ReAct is more likely to identify instruction-relevant

products and options by reasoning to bridge the gap between noisy observations and

actions (e.g. “For ‘space-saving ottoman bench for living room’, the item has options

‘39x18x18inch’ and ‘blue’ and seems good to buy.”). However, existing methods are

still far from the performance of expert humans (Table 4.4), who perform significantly

more product explorations and query re-formulations that are still challenging for

prompting-based methods.

On the value of internal reasoning vs. external feedback. To our knowledge,

ReAct is the first demonstration of combined reasoning and action using an LLM

applied to an interactive environment within a closed-loop system. Perhaps the closest

prior work is Inner Monologue (IM), from [120], in which actions from an embodied
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agent are motivated by an eponymous “inner monologue”. However, IM’s “inner

monologue” is limited to observations of the environment state and what needs to be

completed by the agent for the goal to be satisfied. In contrast, the reasoning traces

in ReAct for decision making is flexible and sparse, allowing diverse reasoning types

(see Section 4.3) to be induced for different tasks.

To demonstrate the differences between ReAct and IM, and to highlight the

importance of internal reasoning vs. simple reactions to external feedback, we ran

an ablation experiment using a thought pattern composed of IM-like dense external

feedback. As can be seen in Table 4.3, ReAct substantially outperforms IM-style

prompting (ReAct-IM) (71 vs. 53 overall success rate), with consistent advantages

on five out of six tasks. Qualitatively, we observed that ReAct-IM often made

mistakes in identifying when subgoals were finished, or what the next subgoal should

be, due to a lack of high-level goal decomposition. Additionally, many ReAct-IM

trajectories struggled to determine where an item would likely be within the ALFWorld

environment, due to a lack of commonsense reasoning. Both shortcomings can be

addressed in the ReAct paradigm.

4.6 Incorporating Reasoning and Acting with

Learning

ReAct is a general paradigm to use language models, and the ReAct format can

be used to both prompt and fine-tune LMs. However, the prompting paradigm has

fundamental limitations, as the LM only has limited learning from in-context examples

and cannot improve through task experience. In Section 4.4, we have seen initial

evidence that ReAct fine-tuning can further improve the task performance. Here, we

briefly describe two follow-up directions that improve ReAct agents by either updating

its language prompt, or underlying model weights. These two directions will be further
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conceptually characterized and unified as “learning” actions that update the long-term

memory of agents in Chapter 6.

4.6.1 Reflexion: Reasoning to Learn

Reflexion is a novel framework to reinforce language agents not by updating weights,

but instead through linguistic feedback. Concretely, Reflexion agents verbally reflect

on task feedback signals, then maintain their own reflective text in an episodic memory

buffer to induce better decision-making in subsequent trials. Reflexion is flexible enough

to incorporate various types (scalar values or free-form language) and sources (external

or internally simulated) of feedback signals, and obtains significant improvements over

a baseline agent across diverse tasks (sequential decision-making, coding, language

reasoning). For example, Reflexion achieves a 91% pass@1 accuracy on the HumanEval

coding benchmark, surpassing the previous state-of-the-art GPT-4 that achieves 80%.

We also conduct ablation and analysis studies using different feedback signals, feedback

incorporation methods, and agent types, and provide insights into how they affect

performance. Detailed can be seen in [276].
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Figure 4.4: Reflexion works on decision-making (ALFWorld [278]), programming
(HumanEval [46]), and reasoning (HotpotQA [351]) tasks. Compared to traditional
reinforcement learning via back-propagation of scalar feedback, Reflexion can be seen
as “verbal reinforcement learning” via reflective reasoning of more general and flexible
language feedback.
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4.6.2 FireAct: Fine-tuning to Learn

Extending upon the initial ReAct fine-tuning experiments in Section 4.4, FireAct

(Fine-tune ReAct) delves into the exploration and argumentation that fine-tuning LMs

with agentic data not only equips various base LMs with improved agent functionalities

but also serves as a valuable supplement to instruction datasets. It is a novel method

to fine-tune LMs as agents by incorporating diverse reasoning and agentic trajectories

derived from multiple tasks and prompting techniques. The outcomes demonstrate

that moving from traditional instruction tuning to agent tuning allows LMs ranging

from Llama2-7B to GPT-3.5 to further enhance their problem-solving capabilities on

various tasks including questions answering, math word problem solving and code

generation by autonomously choosing to utilize their own knowledge for reasoning or

employing external tools with agent actions.

CoT

ReAct

Reflexion

HotpotQA

Tools
Multi-method

Prompts

(e.g., GPT-4)

(a) Fine-tuning

x LM

LM FLM

Incorrect (removed)

CoT trajs

ReAct trajs

Reflexion trajs

Correct trajectories

Question: 3+4+5=? 
Thought: 3+4+5=7+5=12. Answer is 12.
Action: Finish[12]
Observation: reward = 1

Multi-task
Questions

StrategyQA

MMLU

generate

reformat ReActReAct-format
trajectories

fine-tune

Tools

FLMTest Question

(3+4+5=?)

CoT

ReAct

Reflexion

Implicit method selection

(b) Inference

CoT in ReAct format for simple questions

generate

(e.g., Llama2) (finetuned LM)

Figure 4.5: Illustration of FireAct. (a) During fine-tuning, a large LM (e.g., GPT-4)
generates task-solving trajectories based on questions from different datasets and
prompts from different methods. The successful trajectories are then converted into
the ReAct format to fine-tune a smaller LM. (b) During inference, the fine-tuned LM
could operate without few-shot prompting, and could implicitly select an prompting
method to complete a ReAct trajectory with flexible lengths, adapting to different
question complexities. For example, a simple question could be solved using only one
thought-action-observation round, without using tools.
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4.7 Discussion

ReAct is the first method to generally apply LLMs as agents, and has become the

foundation of various language agents deployed to various domains, such as art [294],

healthcare [124], robotics [111], education [33], disaster control [56], fact checking [255],

networks [99], and autonomous driving [83]. By abstracting actuating, information

retrieval, code execution, robotic control, utterance with humans, and various tool

usages as external acting, and verbal planning and re-planning, self-reflection, task

progress tracking, commonsense deduction, and various belief updates as internal

reasoning, and by treating reasoning as augmented actions for agents, ReAct is able

to provide a simple and general paradigm for language agents, where reasoning and

acting complement each other.

In the next chapter, we will see the other benefit of viewing reasoning as actions

— we can readily apply action planning techniques such as tree search to improve

reasoning.
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Chapter 5

Tree of Thoughts: Building Agents

that Reason to Plan

5.1 Introduction

Originally designed to generate text, scaled-up versions of language models (LMs) such

as GPT [257, 259, 30, 236] and PaLM [52], have been increasingly capable of performing

an ever wider range of tasks requiring mathematical, symbolic, commonsense, and

knowledge reasoning. In the last chapter, we have witness that ReAct enabled LMs to

even perform general agentic tasks to interact with the world. Perhaps more surprising

than all the progress is the fact that underlying all this progress is still the original

autoregressive mechanism for generating text, which makes token-level decisions one

by one and in a left-to-right fashion. Is such a simple mechanism sufficient for a LM

to be built toward a general problem solver? If not, what problems would challenge

the current paradigm, and what should be alternative mechanisms?

The literature on human cognition provides some clues to answer these questions.

Research on “dual process” models suggests that people have two modes in which

they engage with decisions – a fast, automatic, unconscious mode (“System 1”) and
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a slow, deliberate, conscious mode (“System 2”) [285, 286, 135, 134]. These two

modes have previously been connected to a variety of mathematical models used in

machine learning. For example, research on reinforcement learning in humans and

other animals has explored the circumstances under which they engage in associative

“model free” learning or more deliberative “model based” planning [64]. The simple

associative token-level choices of LMs are also reminiscent of “System 1”, and thus

might benefit from augmentation by a more deliberate “System 2” planning process

that (1) maintains and explores diverse alternatives for current choices instead of just

picking one, and (2) evaluates its current status and actively looks ahead or backtracks

to make more global decisions.

To design such a planning process, we return to the origins of artificial intelligence

(and cognitive science), drawing inspiration from the planning processes explored by

Newell, Shaw, and Simon starting in the 1950s [218, 219]. Newell and colleagues

characterized problem solving [218] as search through a combinatorial problem space,

represented as a tree. We thus propose the Tree of Thoughts (ToT) framework for

general problem solving with language models. As Figure 5.1 illustrates, while existing

methods (detailed below) sample continuous language sequences for problem solving,

ToT actively maintains a tree of thoughts, where each thought is a coherent language

sequence that serves as an intermediate step toward problem solving (Table 5.1).

Such a high-level semantic unit allows the LM to self-evaluate the progress different

intermediate thoughts make towards solving the problem through a deliberate reasoning

process that is also instantiated in language (Figures 5.2,5.4,5.6). This implementation

of search heuristics via LM self-evaluation and deliberation is novel, as previous search

heuristics are either programmed or learned. Finally, we combine this language-based

capability to generate and evaluate diverse thoughts with search algorithms, such

as breadth-first search (BFS) or depth-first search (DFS), which allow systematic

exploration of the tree of thoughts with lookahead and backtracking.
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Figure 5.1: Schematic illustrating various approaches to problem solving with LLMs.
Each rectangle box represents a thought, which is a coherent language sequence that
serves as an intermediate step toward problem solving. See concrete examples of how
thoughts are generated, evaluated, and searched in Figures 5.2,5.4,5.6.

Empirically, we propose three new problems that challenge existing LM inference

methods even with the state-of-the-art language model, GPT-4 [236]: Game of

24, Creative Writing, and Crosswords (Table 5.1). These tasks require deductive,

mathematical, commonsense, lexical reasoning abilities, and a way to incorporate

systematic planning or search. We show ToT obtains superior results on all three

tasks by being general and flexible enough to support different levels of thoughts,

different ways to generate and evaluate thoughts, and different search algorithms that

adapt to the nature of different problems. We also analyze how such choices affect

model performances via systematic ablations and discuss future directions to better

train language models and use them towards language agents.

5.2 Related Work

Planning and decision making. Smart planning and decision making are critical

to achieving predefined goals. As they are trained on vast amount of world knowledge
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and human examples, LMs are known to have already absorbed rich commonsense

that makes it possible to propose reasonable plans conditioned on problem setting

and environmental states [119, 372, 328, 120, 316, 360, 350]. Our proposed ToT

approach extends existing planning formulations by considering multiple potentially

feasible plans simultaneously at each problem-solving step, and proceeding with the

most promising ones. The integration between thought sampling and value feedback

organically integrates planning and decision-making mechanisms, enabling effective

search inside a solution tree. On the other hand, traditional decision-making procedures

usually require training dedicated reward and policy models as in reinforcement learning

(for example CHAI [311]), whereas we use the LM itself to provide the value estimates

for decision making. RAP [102] is a concurrent work that treats language model

reasoning as planning with its internal world model, and proposes a MCTS-based

method similar to ToT. However, its tasks are simpler than ours, and its framework

lacks the modularity to incorporate different tree search algorithms.

Self-reflection. Using LLMs to assess the viability of their own predictions is

becoming an increasingly important procedure in problem solving. [276, 196, 247]

introduced the “self-reflection” mechanism, in which LMs provide feedback to their

generation candidates. [47] improves LMs code generation accuracy by injecting

feedback messages generated by the LM itself based on its code execution results.

Similarly, [138] also introduces “critic” or review steps over the actions and states,

deciding the next action to take in solving computer operation tasks. Another recent

work very relevant to ours is “self-eval guided decoding” [345]. Similar to our method,

self-eval decoding also follows a tree-search procedure with leaves sampled from

stochastic beam search decoding, which are then evaluated by LLM itself with carefully

prepared self-eval prompts. Their approach however, uses the PAL formulation [87]

which represents thoughts as codes, which makes it difficult to tackle challenging
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tasks like creative writing which we consider in this chapter. Our Tree-of-Thought

formulation is thus more versatile and handles challenging tasks on which GPT-4 only

achieves very low accuracy with standard prompts.

Program-guided LLM generation. Our proposal is also related to recent advance-

ments that organize LM’s behavior with systematic procedures [133, 386, 59, 380] or

symbolic program guidance. For example, [270] embeds LMs in an algorithmic search

procedure to help solve problems like question answering step-by-step, in which the

search trees are expanded by relevant paragraphs that might provide answers. This

approach however differs from ours in that trees are expanded by sampling external

paragraphs instead of the LM’s own thoughts, and there is no reflection or voting

steps. Another approach, LLM+P [180], goes one step further and delegates the actual

planning process to a classical planner.

Classical search methods. Last but not least, our approach can be treated as

a modern rendition of classical search methods for problem solving. For example it

can be considered as a heuristic search algorithm like A*, in which the heuristic at

each search node is provided by the LM’s self-assessment. From this perspective, our

method is also related to NeuroLogic A*esque decoding [191], which is inspired by

A* search but introduces look-ahead heuristics that are efficient for LMs to improve

the beam-search or top-k sampling decoding. This method however is constrained to

sentence generation tasks, whereas our framework are designed for complex, multi-step

problem solving guarded by value feedback.

5.3 Background

We first formalize some existing methods that use large language models for problem-

solving, which our approach is inspired by and later compared with. We use pθ to

97



denote a pre-trained LM with parameters θ, and lowercase letters x, y, z, s, · · · to

denote a language sequence, i.e.x = (x[1], · · · , x[n]) where each x[i] is a token,

so that pθ(x) =
∏n

i=1 pθ(x[i]|x[1...i]). We use uppercase letters S, · · · to denote a

collection of language sequences.

Input-output (IO) prompting is the most common way to turn a problem input

x into output y with LM: y ∼ pθ(y|promptIO(x)), where promptIO(x) wraps input x

with task instructions and/or few-shot input-output examples. For simplicity, let us

denote pprompt
θ (output | input) = pθ(output | prompt(input)), so that IO prompting

can be formulated as y ∼ pIOθ (y|x).

Chain-of-thought (CoT) prompting [332] was proposed to address cases where

the mapping of input x to output y is non-trivial (e.g. when x is a math question and

y is the final numerical answer). The key idea is to introduce a chain of thoughts

z1, · · · , zn to bridge x and y, where each zi is a coherent language sequence that

serves as a meaningful intermediate step toward problem solving (e.g. zi could be

an intermediate equation for math QA). To solve problems with CoT, each thought

zi ∼ pCoT
θ (zi | x, z1···i−1) is sampled sequentially, then the output y ∼ pCoT

θ (y|x, z1···n).

In practice, [z1···n, y] ∼ pCoT
θ (z1···n, y|x) is sampled as a continuous language sequence,

and the decomposition of thoughts (e.g. is each zi a phrase, a sentence, or a paragraph)

is left ambiguous.

Self-consistency with CoT (CoT-SC) [323] is an ensemble approach that

samples k i.i.d. chains of thought: [z
(i)
1···n, y

(i)] ∼ pCoT
θ (z1···n, y|x) (i = 1 · · · k), then

returns the most frequent output: arg maxy #{i | y(i) = y}. CoT-SC improves upon

CoT, because there are generally different thought processes for the same problem

(e.g. different ways to prove the same theorem), and the output decision can be more

faithful by exploring a richer set of thoughts. However, within each chain there is no

local exploration of different thought steps, and the “most frequent” heuristic only

applies when the output space is limited (e.g. multi-choice QA).
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5.4 Tree of Thoughts

A genuine problem-solving process involves the repeated use of available

information to initiate exploration, which discloses, in turn, more infor-

mation until a way to attain the solution is finally discovered.

—— [218]

Research on human problem-solving suggests that people search through a combi-

natorial problem-space – a tree where the nodes represent partial solutions, and the

branches correspond to operators that modify them [218, 219]. Which branch to take

is determined by heuristics that help to navigate the problem-space and guide the

problem-solver towards a solution. This perspective highlights two key shortcomings

of existing approaches that use LMs to solve general problems: 1) Locally, they do not

explore different continuations within a thought process – the branches of the tree. 2)

Globally, they do not incorporate any type of planning, lookahead, or backtracking to

help evaluate these different options – the kind of heuristic-guided search that seems

characteristic of human problem-solving.

To address these shortcomings, we introduce Tree of Thoughts (ToT), a paradigm

that allows LMs to explore multiple reasoning paths over thoughts (Figure 5.1(c)). ToT

frames any problem as a search over a tree, where each node is a state s = [x, z1···i]

representing a partial solution with the input and the sequence of thoughts so far. A

specific instantiation of ToT involves answering four questions: 1. How to decompose

the intermediate process into thought steps; 2. How to generate potential thoughts

from each state; 3. How to heuristically evaluate states; 4. What search algorithm

to use.

1. Thought decomposition While CoT samples thoughts coherently without ex-

plicit decomposition, ToT leverages problem properties to design and decompose

intermediate thought steps. As Table 5.1 shows, depending on different problems, a

99



thought could be a couple of words (Crosswords), a line of equation (Game of 24), or

a whole paragraph of writing plan (Creative Writing). In general, a thought should be

“small” enough so that LMs can generate promising and diverse samples (e.g. generating

a whole book is usually too “big” to be coherent), yet “big” enough so that LMs can

evaluate its prospect toward problem solving (e.g. generating one token is usually too

“small” to evaluate).

2. Thought generator G(pθ, s, k) Given a tree state s = [x, z1···i], we consider two

strategies to generate k candidates for the next thought step:

(a) Sample i.i.d. thoughts from a CoT prompt (Creative Writing, Figure 5.4):

z(j) ∼ pCoT
θ (zi+1|s) = pCoT

θ (zi+1|x, z1···i) (j = 1 · · · k). This works better when

the thought space is rich (e.g. each thought is a paragraph), and i.i.d. samples

lead to diversity;

(b) Propose thoughts sequentially using a “propose prompt” (Game of 24, Fig-

ure 5.2; Crosswords, Figure 5.6): [z(1), · · · , z(k)] ∼ pproposeθ (z
(1···k)
i+1 | s). This works

better when the thought space is more constrained (e.g. each thought is just

a word or a line), so proposing different thoughts in the same context avoids

duplication.

3. State evaluator V (pθ, S) Given a frontier of different states, the state evaluator

evaluates the progress they make towards solving the problem, serving as a heuristic

for the search algorithm to determine which states to keep exploring and in which

order. While heuristics are a standard approach to solving search problems, they

are typically either programmed (e.g. DeepBlue [38]) or learned (e.g. AlphaGo [281]).

We propose a third alternative, by using the LM to deliberately reason about states.

When applicable, such a deliberate heuristic can be more flexible than programmed
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rules, and more sample-efficient than learned models. Similar to the thought generator,

we consider two strategies to evaluate states either independently or together:

(a) Value each state independently: V (pθ, S)(s) ∼ pvalueθ (v|s) ∀s ∈ S, where a value

prompt reasons about the state s to generate a scalar value v (e.g. 1-10) or a

classification (e.g. sure/likely/impossible) that could be heuristically turned into

a value. The basis of such evaluative reasoning can vary across problems and

thought steps. In this work, we explore evaluation via few lookahead simulations

(e.g. quickly confirm that 5, 5, 14 can reach 24 via 5 + 5 + 14, or “hot l” can

mean “inn” via filling “e” in “ ”) plus commonsense (e.g. 1 2 3 are too small to

reach 24, or no word can start with “tzxc”). While the former might promote

“good” states, the latter could help eliminate “bad” states. Such valuations do

not need to be perfect, and only need to be approximately helpful for decision

making.

(b) Vote across states: V (pθ, S)(s) = 1[s = s∗], where a “good” state s∗ ∼

pvoteθ (s∗|S) is voted out based on deliberately comparing different states in S in

a vote prompt. When problem success is harder to directly value (e.g. passage

coherency), it is natural to to instead compare different partial solutions and

vote for the most promising one. This is similar in spirit to a “step-wise” self-

consistency strategy, i.e. cast “which state to explore” as a multi-choice QA, and

use LM samples to vote for it.

For both strategies, we could prompt the LM multiple times to aggregate the value or

vote results to trade time/resource/cost for more faithful/robust heuristics.

4. Search algorithm Finally, within the ToT framework, one can plug and play

different search algorithms depending on the tree structure. We explore two relatively

simple search algorithms and leave more advanced ones (e.g. A* [103], MCTS [31]) for

future work:
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Algorithm 1 ToT-BFS(x, pθ, G, k, V, T, b)

Require: Input x, LM pθ, thought generator G() & size limit k, states evaluator V (),
step limit T , breadth limit b.
S0 ← {x}
for t = 1, · · · , T do

S ′
t ← {[s, z] | s ∈ St−1, zt ∈ G(pθ, s, k)}

Vt ← V (pθ, S
′
t)

St ← arg maxS⊂S′
t,|S|=b

∑
s∈S Vt(s)

end for
return G(pθ, arg maxs∈ST

VT (s), 1)

Algorithm 2 ToT-DFS(s, t, pθ, G, k, V, T, vth)

Require: Current state s, step t, LM pθ, thought generator G() and size limit k,
states evaluator V (), step limit T , threshold vth
if t > T then record output G(pθ, s, 1)
end if
for s′ ∈ G(pθ, s, k) do ▷ sorted candidates

if V (pθ, {s′})(s) > vthres then ▷ pruning
DFS(s′, t + 1)

end if
end for

(a) Breadth-first search (BFS) (Algorithm 1) maintains a set of the b most

promising states per step. This is used for Game of 24 and Creative Writing

where the tree depth is limit (T ≤ 3), and initial thought steps can be evaluated

and pruned to a small set (b ≤ 5).

(b) Depth-first search (DFS) (Algorithm 2) explores the most promising state

first, until the final output is reached (t > T ), or the state evaluator deems it

impossible to solve the problem from the current s (V (pθ, {s})(s) ≤ vth for a

value threshold vth). In the latter case, the subtree from s is pruned to trade

exploration for exploitation. In both cases, DFS backtracks to the parent state

of s to continue exploration.

Conceptually, ToT has several benefits as a method for general problem-solving

with LMs: (1) Generality. IO, CoT, CoT-SC, and self-refinement can be seen as special
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cases of ToT (i.e. trees of limited depth and breadth; Figure 5.1). (2) Modularity.

The base LM, as well as the thought decomposition, generation, evaluation, and

search procedures can all be varied independently. (3) Adaptability. Different problem

properties, LM capabilities, and resource constraints can be accommodated. (4)

Convenience. No extra training is needed, just a pre-trained LM is sufficient. The

next section will show how these conceptual benefits translate to strong empirical

performance in different problems.

5.5 Experiments

Game of 24 Creative Writing 5x5 Crosswords

Input 4 numbers (4 9 10 13) 4 random sentences 10 clues
(h1. presented;..)

Output An equation to reach
24 (13-9)*(10-4)=24

A passage of 4 para-
graphs ending in the
4 sentences

5x5 letters: SHOWN;
WIRRA; AVAIL; ...

Thoughts 3 intermediate equa-
tions (13-9=4 (left
4,4,10); 10-4=6 (left
4,6); 4*6=24)

A short writing plan
(1. Introduce a book
that connects...)

Words to fill in for
clues: (h1. shown;
v5. naled; ...)

#ToT steps 3 1 5-10 (variable)

Table 5.1: Task overview. Input, output, thought examples are in blue.

We propose three tasks that are hard even when sampling from the state-of-the-art

language model, GPT-4 [236], using standard IO prompting or chain-of-thought (CoT)

prompting. We show how deliberate search in trees of thoughts (ToT) produces better

results, and more importantly, interesting and promising new ways to use language

models to solve problems requiring search or planning. Unless otherwise stated,

we perform experiments using a Chat Completion mode GPT-41 with a sampling

temperature of 0.7.

1Experiments were done between May 5-16, 2023.
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5.5.1 Game of 24

Game of 24 is a mathematical reasoning challenge, where the goal is to use 4 numbers

and basic arithmetic operations (+-*/) to obtain 24. For example, given input “4 9

10 13”, a solution output could be “(10 - 4) * (13 - 9) = 24”.
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Figure 5.2: ToT in a game of 24. The LM is prompted for (a) thought generation and
(b) valuation.

Task Setup We scrape data from 4nums.com, which has 1,362 games that are

sorted from easy to hard by human solving time, and use a subset of relatively hard

games indexed 901-1,000 for testing. For each task, we consider the output as success

if it is a valid equation that equals 24 and uses the input numbers each exactly once.

We report the success rate across 100 games as the metric.

Baselines We use a standard input-output (IO) prompt with 5 in-context examples.

For chain-of-thought (CoT) prompting, we augment each input-output pair with 3

intermediate equations, each operating on two remaining numbers. For example, given

input “4 9 10 13”, the thoughts could be “13 - 9 = 4 (left: 4 4 10); 10 - 4 = 6 (left: 4 6);

4 * 6 = 24 (left: 24)”. For each game, we sample IO and CoT prompting for 100 times

for average performance. We also consider a CoT self-consistency baseline, which

takes the majority output from 100 CoT samples, and an iterative-refine approach on

top of an IO sample for at most 10 iterations. At each iteration, the LM is conditioned

on all previous history to “reflect on your mistakes and generate a refined answer” if
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Method Success

IO prompt 7.3%
CoT prompt 4.0%
CoT-SC (k=100) 9.0%
ToT (ours) (b=1) 45%
ToT (ours) (b=5) 74%

IO + Refine (k=10) 27%
IO (best of 100) 33%
CoT (best of 100) 49%

Table 5.2: Game of 24
Results.
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(a) Success rate with nodes visited

IO (best of k)
CoT (best of k)
ToT (b=1...5)

1 2 3 4 Correct
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(b) Samples failed at each step

CoT
ToT (b=5)

Figure 5.3: Game of 24 (a) scale analysis & (b) error analysis.

the output is incorrect. Note that it uses groundtruth feedback signals about equation

correctness.

ToT Setup To frame Game of 24 into ToT, it is natural to decompose the thoughts

into 3 steps, each an intermediate equation. As shown in Figure 5.2(a), at each tree

node, we exact the remaining numbers and prompt the LM to propose some possible

next steps. The same “propose prompt” is used for all 3 thought steps, though it only

has one example with 4 input numbers. We perform a breadth-first search (BFS) in

ToT, where at each step we keep the best b = 5 candidates. To perform deliberate

BFS in ToT, as shown in Figure 5.2(b), we prompt LM to evaluate each thought

candidate as “sure/maybe/impossible” with regard to reaching 24. The aim is to

promote correct partial solutions that can be verdicted within few lookahead trials,

and eliminate impossible partial solutions based on “too big/small” commonsense,

and keep the rest “maybe”. We sample values 3 times for each thought.

Results As shown in Table 5.2, IO, CoT, and CoT-SC prompting methods perform

badly on the task, achieving only 7.3%, 4.0%, and 9.0% success rates. In contrast, ToT

with a breadth of b = 1 already achieves a success rate of 45%, while b = 5 achieves

74%. We also consider an oracle setup for IO/CoT, by calculating the success rate
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using best of k samples (1 ≤ k ≤ 100). To compare IO/CoT (best of k) with ToT, we

consider calculating the tree nodes visited per task in ToT across b = 1 · · · 5, and map

the 5 success rates in Figure 5.3(a), treating IO/CoT (best of k) as visiting k nodes in

a bandit. Not surprisingly, CoT scales better than IO, and best of 100 CoT samples

achieve a success rate of 49%, but still much worse than exploring more nodes in ToT

(b > 1).

Error analysis Figure 5.3(b) breaks down at which step CoT and ToT samples fail

the task, i.e. the thought (in CoT) or all b thoughts (in ToT) are invalid or impossible to

reach 24. Notably, around 60% of CoT samples already failed the task after generating

the first step, or equivalently, the first three words (e.g. “4 + 9”). This highlights the

issues with direct left-to-right decoding.

5.5.2 Creative writing

Next, we invent a creative writing task where the input is 4 random sentences and

the output should be a coherent passage with 4 paragraphs that end in the 4 input

sentences respectively. Such a task is open-ended and exploratory, and challenges

creative thinking as well as high-level planning.

Task setup We sample random sentences from randomwordgenerator.com to form

100 inputs, and there is no groundtruth passage for each input constraint. As we find

that GPT-4 can follow the input constraints most of the time, we focus on evaluating

passage coherency in two ways: using a GPT-4 zero-shot prompt to provide a 1-10

scalar score, or using human judgments to compare pairs of outputs from different

methods. For the former, we sample 5 scores and average them for each task output,

and we find these 5 scores usually consistent, with a standard deviation of around

0.56 on average across outputs. For the latter, we employ a subset of the authors in a
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blind study to compare the coherency of CoT vs. ToT generated passage pairs, where

the order of passages is random flipped over 100 inputs.

Baselines Given the creative nature of the task, both IO and CoT prompts are

zero-shot. While the former prompts the LM to directly generate a coherent passage

given input constraints, the latter prompts the LM to first make a brief plan then

write the passage, i.e. the plan serves as the intermediate thought step. We generate

10 IO and CoT samples per task. We also consider an iterative-refine (k ≤ 5) method

on top of a random IO sample for each task, where the LM is conditioned on input

constraints and the last generated passage to decide if the passage is already “perfectly

coherent”, and if not generate a refined one.

ToT setup We build a ToT with depth 2 (and only 1 intermediate thought step)

— the LM first generates k = 5 plans and votes for the best one (Figure 5.4), then

similarly generate k = 5 passages based on the best plan then vote for the best one.

Here the breadth limit b = 1, as only one choice is kept per step. A simple zero-shot

vote prompt (“analyze choices below, then conclude which is most promising for the

instruction”) is used to sample 5 votes at both steps.

Results Figure 5.5(a) shows average GPT-4 scores across 100 tasks, where ToT

(7.56) is deemed to generate more coherent passages than IO (6.19) and CoT (6.93)

on average. While such an automatic metric might be noisy, Figure 5.5(b) confirms

the finding by showing that humans prefer ToT over CoT in 41 out of 100 passage

pairs, while only prefer CoT over ToT in 21 (other 38 pairs are found “similarly

coherent”). Lastly, iterative-refine is more effective on this natural language task,

where it improves IO coherency score from 6.19 to 7.67, and ToT coherency score

from 7.56 to 7.91. We believe it could be thought of as a third approach to thought
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Figure 5.4: A step of deliberate search in a randomly picked Creative Writing task.
Given the input, the LM samples 5 different plans, then votes 5 times to decide which
plan is best. The majority choice is used to consequently write the output passage
with the same sample-vote procedure.
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Figure 5.5: Creative Writing results.

Method Success Rate (%)
LetterWord Game

IO 38.7 14 0
CoT 40.6 15.6 1
ToT (ours) 78 60 20

+best state 82.4 67.5 35
-prune 65.4 41.5 5
-backtrack 54.6 20 5

Table 5.3: Mini Crosswords re-
sults.

generation in the ToT framework, where new thoughts can arise from refining old

thoughts instead of i.i.d. or sequentially generated.

5.5.3 Mini crosswords

In Game of 24 and Creative Writing, ToT is relatively shallow — at most 3 thought

steps are needed to reach the final output. Here we explore 5× 5 mini crosswords as

a harder search problem involving natural language. Again, the goal is not just to

solve the task, as more general crosswords can be readily solved with specialized NLP
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Figure 5.6: In Mini Crosswords, (a) how thoughts are proposed and aggregated in a
priority queue for depth-first search (DFS), and (b) how a state is evaluated based on
the possibility of filling in each remaining word clue, and pruned if any remaining clue
is deemed not possible to fill by the LM. Then DFS backtracks to the parent state
and explore the next promising thought for clue.

pipelines [313] that leverages large-scale retrieval instead of LM. Rather, we aim to

explore the limit of LM as a general problem solver that explores its own thoughts

and guides its own exploration with deliberate reasoning as heuristics.

Task setup We scrape data from GooBix, which contains 156 games of 5× 5 mini

crosswords. As we observe adjacent games contain similar clues, we use 20 games with

indices 1, 6, · · · , 91, 96 for testing, and games 136, 141, 146, 151, 156 for prompting.

For each task, the input describes the 5 horizontal clues and 5 vertical clues, and the

output should be a board of 5× 5 = 25 letters to solve the crosswords. For evaluation,

we consider three levels of success: the portion of correct letters (25 per game), words

(10 per game), and games.

Baselines We provide 5 example input-output pairs in the IO prompt, and in the

CoT prompt additionally include intermediate words in the order h1..5 then v1..5.

We run each prompt for 10 samples and average the results.
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ToT setup We leverage a depth-first search (Algorithm 2) that keeps exploring

the most promising subsequent word clue until the state is no longer promising, then

backtrack to the parent state to explore alternative thoughts. To make search tractable,

subsequent thoughts are constrained not to change any filled words or letters, so that

the ToT has at most 10 intermediate steps. For thought generation, at each state we

translate all existing thoughts (e.g. “h2.motor; h1.tasks” for the state in Figure 5.6(a))

into letter constraints for remaining clues (e.g. “v1.To heap: tm ;...”) and prompt a

proposal prompt 5 times to come up with candidates for where and what to fill in the

next word. Importantly, we also prompt the LM to give a confidence level for different

thoughts, and aggregate these across proposals to obtain a sorted list of next thoughts

to explore (Figure 5.6(a)). For state evaluations, we similarly translate each state

into letter constraints for remaining clues, then evaluate for each clue if it is possible

to fill given the constraints. If any remaining clue is deemed “impossible” to fill in

(e.g. “v1. To heap: tm s ”), then the exploration of the state’s subtree is pruned and

DFS backtracks to its parent to explore the next promising thought. We limit DFS

search steps to 100, and simply render the deepest explored state (the first explored

one if multiple) into the final output.

Results As shown in Table 5.3, IO and CoT prompting methods perform poorly

with a word-level success rate less than 16%, while ToT significantly improves all

metrics, achieving a word-level success rate of 60% and solving 4 out of 20 games.

Such an improvement is not surprising, given IO and CoT lack mechanisms to try

different clues, make changes to decisions, or backtrack.

Oracle and ablation studies When outputting from the oracle best DFS state

(instead of the heuristically determined best state) per task, ToT performance is

even higher and actually solves 7/20 games (Table 5.3, “+best state”), indicating our

simple output heuristics can be readily improved. Interestingly, sometimes when the
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crosswords game is actually solved, the state evaluator might still deem some words

as “impossible” and prune — possibly because 5× 5 crosswords by design have some

rare or obselete words that GPT-4 cannot recognize2. Given the state evaluation as

a pruning heuristic is imperfect, we also explore ablating the pruning, and find the

performance generally worse (Table 5.3, “-prune”). However, it could actually find the

correct solution for 4/20 games (though only outputting 1 via heuristic), 3 of which are

games ToT+pruning cannot solve within 100 steps. Thus, better heuristics for DFS

pruning are critical for problem solving in this case. Lastly, we confirm the importance

of backtracking by running an ablation that keeps filling the most promising clue for

at most 20 steps, allowing overwrites. This is similar to a “greedy” BFS search with

breadth limit of b = 1, and performs poorly with a word level success of only 20%

(Table 5.3, “-backtrack”).

5.6 Discussion

The associative “System 1” of LMs can be beneficially augmented by a “System 2”

based on searching a tree of possible paths to the solution to a problem. The Tree

of Thoughts framework provides a way to translate classical insights about problem-

solving into actionable methods for contemporary LMs. At the same time, LMs address

a weakness of these classical methods, providing a way to solve complex problems

that are not easily formalized, such as creative writing. We see this intersection of

LMs with classical approaches to AI as an exciting direction, which leads to the next

chapter where we go beyond leveraging one classical algorithm (tree search) to improve

one capability (deliberate reasoning and planning) of language agents, but to leverage

the classical research field of cognitive architectures to systematize and consolidate

the whole research field of language agents.

2For example, “agend” is an obsolete form of “agendum”, but GPT-4 deems it a typo for “agenda”.
External retrieval or web interaction could augment LM for problem solving under knowledge
uncertainty.
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Chapter 6

CoALA: Cognitive Architectures

for Language Agents

6.1 Introduction

Language agents, as shown in all previous chapters, are an emerging class of artificial

intelligence (AI) systems that use large language models (LLMs) to interact with

the world. They apply the latest advances in LLMs to the existing field of agent

design [266]. Intriguingly, this synthesis offers benefits for both fields. On one hand,

LLMs possess limited knowledge and reasoning capabilities. Language agents mitigate

these issues by connecting LLMs to internal memory and environments, grounding

them to existing knowledge or external observations. On the other hand, traditional

agents often require handcrafted rules [336] or reinforcement learning [295], making

generalization to new environments challenging [153]. Language agents leverage

commonsense priors present in LLMs to adapt to novel tasks, reducing the dependence

on human annotation or trial-and-error learning.

While the earliest agents used LLMs to directly select or generate actions [Fig-

ure 6.1B; 7, 119], more recent agents additionally use them to reason [360], plan [102,
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358], and manage long-term memory [242, 314] to improve decision-making. This

latest generation of cognitive language agents use remarkably sophisticated internal

processes (Figure 6.1C). Today, however, individual works use custom terminology to

describe these processes (such as ‘tool use’, ‘grounding’, ‘actions’), making it difficult

to compare different agents, understand how they are evolving over time, or build new

agents with clean and consistent abstractions.

In order to establish a conceptual framework organizing these efforts, we draw

parallels with two ideas from the history of computing and artificial intelligence

(AI): production systems and cognitive architectures. Production systems generate

a set of outcomes by iteratively applying rules [219]. They originated as string

manipulation systems – an analog of the problem that LLMs solve – and were

subsequently adopted by the AI community to define systems capable of complex,

hierarchically structured behaviors [217]. To do so, they were incorporated into

cognitive architectures that specified control flow for selecting, applying, and even

generating new productions [150, 149, 144]. We suggest a meaningful analogy between

production systems and LLMs: just as productions indicate possible ways to modify

strings, LLMs define a distribution over changes or additions to text. This further

suggests that controls from cognitive architectures used with production systems might

be equally applicable to transform LLMs into language agents.

Thus, we propose Cognitive Architectures for Language Agents (CoALA), a

conceptual framework to characterize and design general purpose language agents.

CoALA organizes agents along three key dimensions: their information storage (divided

into working and long-term memories); their action space (divided into internal

and external actions); and their decision-making procedure (which is structured as

an interactive loop with planning and execution). Through these three concepts

(memory, action, and decision-making), we show CoALA can neatly express a large

body of existing agents and identify underexplored directions to develop new ones.
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Figure 6.1: Different uses of large language models (LLMs). A: In natural language
processing (NLP), an LLM takes text as input and outputs text. B: Language
agents [7, 120] place the LLM in a direct feedback loop with the external environment by
transforming observations into text and using the LLM to choose actions. C: Cognitive
language agents [360, 276, 314] additionally use the LLM to manage the agent’s
internal state via processes such as learning and reasoning. In this work, we propose a
blueprint to structure such agents.

Notably, while several recent papers propose conceptual architectures for general

intelligence [159, 201] or empirically survey language models and agents [203, 333, 315],

this chapter combines elements of both: we propose a theoretical framework and use

it to organize diverse empirical work. This grounds our theory to existing practices

and allows us to identify both short-term and long-term directions for future work.

The plan for the rest of the chapter is as follows. We first introduce production

systems and cognitive architectures (Section 6.2) and show how these recent develop-

ments in LLMs and language agents recapitulate these historical ideas (Section 6.3).

Motivated by these parallels, Section 6.4 introduces the CoALA framework and uses it

to survey existing language agents. Section 6.5 provides a deeper case study of several

prominent agents. Section 6.6 suggests actionable steps to construct future language
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agents, while Section 6.7 highlights open questions in the broader arc of cognitive

science and AI. Finally, Section 3.7 concludes. Readers interested in applied agent

design may prioritize Sections 4-6.

6.2 Background: From Strings to Symbolic AGI

We first introduce production systems and cognitive architectures, providing a historical

perspective on cognitive science and artificial intelligence: beginning with theories of

logic and computation [249], and ending with attempts to build symbolic artificial

general intelligence [217]. We then briefly introduce language models and language

agents. Section 6.3 will connect these ideas, drawing parallels between production

systems and language models.

6.2.1 Production systems for string manipulation

In the first half of the twentieth century, a significant line of intellectual work led to the

reduction of mathematics [335] and computation [54, 306] to symbolic manipulation.

Production systems are one such formalism. Intuitively, production systems consist of

a set of rules, each specifying a precondition and an action. When the precondition is

met, the action can be taken. The idea originates in efforts to characterize the limits

of computation. [249] proposed thinking about arbitrary logical systems in these

terms, where formulas are expressed as strings and the conclusions they license are

identified by production rules (as one string “produces” another). This formulation

was subsequently shown to be equivalent to a simpler string rewriting system. In such

a system, we specify rules of the form

X Y Z → XW Z
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indicating that the string XY Z can be rewritten to the string XWZ. String rewriting

plays a significant role in the theory of formal languages, in the form of Chomsky’s

phrase structure grammar [51].

6.2.2 Control flow: From strings to algorithms

By itself, a production system simply characterizes the set of strings that can be

generated from a starting point. However, they can be used to specify algorithms if

we impose control flow to determine which productions are executed. For example,

Markov algorithms are production systems with a priority ordering [198]. The following

algorithm implements division-with-remainder by converting a number written as

strokes | into the form Q ∗R, where Q is the quotient of division by 5 and R is the

remainder:

∗||||| → | ∗

∗ •−→ ∗

→ ∗

where the priority order runs from top to bottom, productions are applied to the

first substring matching their preconditions when moving from left to right (including

the empty substring, in the last production), and
•−→ indicates the algorithm halts

after executing the rule. The first rule effectively “subtracts” five if possible; the

second handles the termination condition when no more subtraction is possible; and

the third handles the empty substring input case. For example, given the input 11,

this would yield the sequence of productions ∗||||||||||| → | ∗ |||||| → || ∗ | •−→ || ∗ | which

is interpreted as 2 remainder 1. Simple productions can result in complex behavior –

Markov algorithms can be shown to be Turing complete.
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6.2.3 Cognitive architectures: From algorithms to agents

Production systems were popularized in the AI community by Allen Newell, who was

looking for a formalism to capture human problem solving [214, 219]. Productions

were generalized beyond string rewriting to logical operations: preconditions that

could be checked against the agent’s goals and world state, and actions that should

be taken if the preconditions were satisfied. In their landmark book Human Problem

Solving [219], Allen Newell and Herbert Simon gave the example of a simple production

system implementing a thermostat agent:

(temperature > 70◦) ∧ (temperature < 72◦) → stop

temperature < 32◦ → call for repairs; turn on electric heater

(temperature < 70◦) ∧ (furnace off) → turn on furnace

(temperature > 72◦) ∧ (furnace on) → turn off furnace

Following this work, production systems were adopted by the AI community. The

resulting agents contained large production systems connected to external sensors,

actuators, and knowledge bases – requiring correspondingly sophisticated control

flow. AI researchers defined “cognitive architectures” that mimicked human cognition

– explicitly instantiating processes such as perception, memory, and planning [2]

to achieve flexible, rational, real-time behaviors [293, 215, 216, 11]. This led to

applications from psychological modeling to robotics, with hundreds of architectures

and thousands of publications (see [144] for a recent survey).

A canonical example is the Soar architecture (Fig. 6.2A). Soar stores productions

in long-term memory and executes them based on how well their preconditions match

working memory (Fig. 6.2B). These productions specify actions that modify the

contents of working and long-term memory. We next provide a brief overview of Soar

and refer readers to [149, 148] for deeper introductions.
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Figure 6.2: Cognitive architectures augment a production system with sensory ground-
ings, long-term memory, and a decision procedure for selecting actions. A: The Soar
architecture, reproduced with permission from [149]. B: Soar’s decision procedure
uses productions to select and implement actions. These actions may be internal
(such as modifying the agent’s memory) or external (such as a motor command).

Memory Building on psychological theories, Soar uses several types of memory

to track the agent’s state [14]. Working memory [17] reflects the agent’s current

circumstances: it stores the agent’s recent perceptual input, goals, and results from

intermediate, internal reasoning. Long term memory is divided into three distinct

types. Procedural memory stores the production system itself: the set of rules that can

be applied to working memory to determine the agent’s behavior. Semantic memory

stores facts about the world [179], while episodic memory stores sequences of the

agent’s past behaviors [233].

Grounding Soar can be instantiated in simulations [298, 132] or real-world robotic

systems [152]. In embodied contexts, a variety of sensors stream perceptual input into

working memory, where it is available for decision-making. Soar agents can also be

equipped with actuators, allowing for physical actions and interactive learning via

language [208, 207, 139].
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Decision making Soar implements a decision loop that evaluates productions and

applies the one that matches best (Fig. 6.2B). Productions are stored in long-term

procedural memory. During each decision cycle, their preconditions are checked against

the agent’s working memory. In the proposal and evaluation phase, a set of productions

is used to generate and rank a candidate set of possible actions.1 The best action is

then chosen.2 Another set of productions is then used to implement the action – for

example, modifying the contents of working memory or issuing a motor command.

Learning Soar supports multiple modes of learning. First, new information can

be stored directly in long-term memory: facts can be written to semantic memory,

while experiences can be written to episodic memory [66]. This information can later

be retrieved back into working memory when needed for decision-making. Second,

behaviors can be modified. Reinforcement learning [295] can be used to up-weight

productions that have yielded good outcomes, allowing the agent to learn from

experience [213]. Most remarkably, Soar is also capable of writing new productions

into its procedural memory [151] – effectively updating its source code.

Cognitive architectures were used broadly across psychology and computer science,

with applications including robotics [152], military simulations [132, 298], and intelli-

gent tutoring [141]. Yet they have become less popular in the AI community over the

last few decades. This decrease in popularity reflects two of the challenges involved in

such systems: they are limited to domains that can be described by logical predicates

and require many pre-specified rules to function.

Intriguingly, LLMs appear well-posed to meet these challenges. First, they operate

over arbitrary text, making them more flexible than logic-based systems. Second,

rather than requiring the user to specify productions, they learn a distribution over

1In more detail, Soar divides productions into two types: “operators,” which we refer to as actions,
and “rules” which are used to propose, evaluate, and execute operators.

2If no actions are valid, or multiple actions tie, then an impasse occurs. Soar creates a subgoal to
resolve the impasse, resulting in hierarchical task decomposition. We refer the reader to [149] for a
more detailed discussion.
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productions via pre-training on an internet corpus. Recognizing this, researchers have

begun to use LLMs within cognitive architectures, leveraging their implicit world

knowledge [340] to augment traditional symbolic approaches [140, 262]. Here, we

instead import principles from cognitive architecture to guide the design of LLM-based

agents.

6.3 Connections between Language Models and

Production Systems

Based on their common origins in processing strings, there is a natural analogy

between production systems and language models. We develop this analogy, then show

that prompting methods recapitulate the algorithms and agents based on production

systems. The correspondence between production systems and language models

motivates our use of cognitive architectures to build language agents, which we

introduce in Section 6.4.

6.3.1 Language models as probabilistic production systems

In their original instantiation, production systems specified the set of strings that

could be generated from a starting point, breaking this process down into a series of

string rewriting operations. Language models also define a possible set of expansions

or modifications of a string – the prompt provided to the model.3

For example, we can formulate the problem of completing a piece of text as a

production. If X is the prompt and Y the continuation, then we can write this as the

production X → X Y .4 We might want to allow multiple possible continuations, in

3In this work, we focus on autoregressive LLMs which are typically used for language agents.
However, bidirectional LLMs such as BERT [67] can be seen in a similar light: they define a
distribution over in-filling productions.

4Alternatively, we can treat the prompt as input and take the output of the LLM as the next
state, represented by the production X → Y – a more literal form of rewriting.
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which case we have X → X Yi for some set of Yi. LLMs assign a probability to each

of these completions. Viewed from this perspective, the LLM defines a probability

distribution over which productions to select when presented with input X, yielding

a distribution P (Yi|X) over possible completions [69]. LLMs can thus be viewed as

probabilistic production systems that sample a possible completion each time they

are called, e.g., X ∼∼▸X Y .

This probabilistic form offers both advantages and disadvantages compared to

traditional production systems. The primary disadvantage of LLMs is their inherent

opaqueness: while production systems are defined by discrete and human-legible rules,

LLMs consist of billions of uninterpretable parameters. This opaqueness – coupled

with inherent randomness from their probabilistic formulation – makes it challenging to

analyze or control their behaviors [262, 310]. Nonetheless, their scale and pre-training

provide massive advantages over traditional production systems. LLMs pre-trained on

large-scale internet data learn a remarkably effective prior over string completions,

allowing them to solve a wide range of tasks out of the box [119].

6.3.2 Prompt engineering as control flow

The weights of an LLM define a prioritization over output strings (completions),

conditioned by the input string (the prompt). The resulting distribution can be

interpreted as a task-specific prioritization of productions – in other words, a simple

control flow. Tasks such as question answering can be formulated directly as an input

string (the question), yielding conditional distributions over completions (possible

answers).

Early work on few-shot learning [30] and prompt engineering [332, 142, 346]

found that the LLM could be further biased towards high-quality productions by

pre-processing the input string. These simple manipulations – typically concatenating

additional text to the input – can themselves be seen as productions, meaning that
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Prompting Method Production Sequence

Zero-shot Q ∼∼∼∼▸
LLM

Q A

Few-shot Q −→ Q1 A1 Q2 A2 Q ∼∼∼∼▸
LLM

Q1 A1 Q2 A2 Q A

Retrieval Augmented Generation Q
Wiki−−→ QO ∼∼∼∼▸

LLM
QOA

Socratic Models Q ∼∼∼∼▸
VLM

QO ∼∼∼∼▸
LLM

QOA

Self-Critique Q ∼∼∼∼▸
LLM

QA ∼∼∼∼▸
LLM

QAC ∼∼∼∼▸
LLM

QAC A

Table 6.1: Conceptual diagram illustrating how prompting methods manipulate
the input string before generating completions. Q = question, A = answer, O =
observation, C = critique, and ∼∼∼▸ denotes sampling from a stochastic production.
These pre-processing manipulations – which can employ other models such as vision-
language models (VLMs), or even the LLM itself – can be seen as productions.
Prompting methods thus define a sequence of productions.

these methods define a sequence of productions (Table 6.1). Later work extended these

approaches to dynamic, context-sensitive prompts: for example, selecting few-shot

examples that are maximally relevant to the input [185] or populating a template

with external observations from video [368] or databases [162]. For a survey of such

prompting techniques, see [186].

Subsequent work used the LLM itself as a pre-processing step, eliciting targeted

reasoning to foreground a particular aspect of the problem [18, 130, 84, 196, 268, 138,

140] or generate intermediate reasoning steps [296, 61, 358] before returning an answer.

Chaining multiple calls to an LLM [342, 343, 69] allows for increasingly complicated

algorithms (Fig. 6.3).

6.3.3 Towards cognitive language agents

Language agents move beyond pre-defined prompt chains and instead place the LLM

in a feedback loop with the external environment (Fig. 6.1B). These approaches first

transform multimodal input into text and pass it to the LLM. The LLM’s output is then
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Figure 6.3: From language models to language agents. A: Basic structure of an LLM
call. Prompt construction selects a template and populates it with variables from
working memory. After calling the LLM, the string output is parsed into an action
space and executed. An LLM call may result in one or more actions – for example,
returning an answer, calling a function, or issuing motor commands. B: Prompt
chaining techniques such as Self-Critique [323] or Selection-Inference [61] use a pre-
defined sequence of LLM calls to generate an output. C: Language agents such as
Inner Monologue [120] and ReAct [360] instead use an interactive feedback loop with
the external environment. Vision-language models (VLMs) can be used to translate
perceptual data into text for the LLM to process.

parsed and used to determine an external action (Fig. 6.3C). Early agents interfaced the

LLM directly with the external environment, using it to produce high-level instructions

based on the agent’s state [7, 120, 63]. Later work developed more sophisticated

language agents that use the LLM to perform intermediate reasoning before selecting

an action [360]. The most recent agents incorporate sophisticated learning strategies

such as reflecting on episodic memory to generate new semantic inferences [276] or

modifying their program code to generate procedural knowledge [314], using their

previous experience to adapt their future behaviors.

These cognitive language agents employ nontrivial LLM-based reasoning and

learning (Fig. 6.1C). Just as cognitive architectures were used to structure production

systems’ interactions with agents’ internal state and external environments, we suggest

that they can help design LLM-based cognitive agents. In the remainder of the chapter,
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Figure 6.4: Cognitive architectures for language agents (CoALA). A: CoALA defines
a set of interacting modules and processes. The decision procedure executes the
agent’s source code. This source code consists of procedures to interact with the LLM
(prompt templates and parsers), internal memories (retrieval and learning), and the
external environment (grounding). B: Temporally, the agent’s decision procedure
executes a decision cycle in a loop with the external environment. During each
cycle, the agent uses retrieval and reasoning to plan by proposing and evaluating
candidate learning or grounding actions. The best action is then selected and
executed. An observation may be made, and the cycle begins again.

we use this perspective to organize existing approaches and highlight promising

extensions.

6.4 Cognitive Architectures for Language Agents

We present Cognitive Architectures for Language Agents (CoALA) as a framework to

organize existing language agents and guide the development of new ones. CoALA

positions the LLM as the core component of a larger cognitive architecture (Fig-

ure 6.4). Under CoALA, a language agent stores information in memory modules

(Section 6.4.1), and acts in an action space structured into external and internal parts

(Figure 6.5):
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• External actions interact with external environments (e.g., control a robot,

communicate with a human, navigate a website) through grounding (Sec-

tion 6.4.2).

• Internal actions interact with internal memories. Depending on which memory

gets accessed and whether the access is read or write, internal actions can be

further decomposed into three kinds: retrieval (read from long-term memory;

Section 6.4.3), reasoning (update the short-term working memory with LLM;

Section 6.4.4), and learning (write to long-term memory; Section 6.4.5).

Language agents choose actions via decision-making, which follows a repeated cycle

(Section 6.4.6, Figure 6.4B). In each cycle, the agent can use reasoning and retrieval

actions to plan. This planning subprocess selects a grounding or learning action, which

is executed to affect the outside world or the agent’s long-term memory. CoALA’s

decision cycle is analogous to a program’s “main” procedure (a method without return

values, as opposed to functions) that runs in loops continuously, accepting new

perceptual input and calling various action procedures in response.

CoALA (Figure 6.4) is inspired by the decades of research in cognitive architectures

(Section 6.2.3), leveraging key concepts such as memory, grounding, learning, and

decision-making. Yet the incorporation of an LLM leads to the addition of “reasoning”

actions, which can flexibly produce new knowledge and heuristics for various purposes

– replacing hand-written rules in traditional cognitive architectures. It also makes text

the de facto internal representation, streamlining agents’ memory modules. Finally,

recent advances in vision-language models [VLMs; 9] can simplify grounding by

providing a straightforward translation of perceptual data into text [368].

The rest of this section details key concepts in CoALA: memory, actions (grounding,

reasoning, retrieval, and learning), and decision-making. For each concept, we use

existing language agents (or relevant NLP/RL methods) as examples – or note gaps

in the literature for future directions.
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6.4.1 Memory

Language models are stateless: they do not persist information across calls. In

contrast, language agents may store and maintain information internally for multi-step

interaction with the world. Under the CoALA framework, language agents explicitly

organize information (mainly textural, but other modalities also allowed) into multiple

memory modules, each containing a different form of information. These include

short-term working memory and several long-term memories: episodic, semantic, and

procedural.

Working memory Working memory maintains active and readily available in-

formation as symbolic variables for the current decision cycle (Section 6.4.6). This

includes perceptual inputs, active knowledge (generated by reasoning or retrieved

from long-term memory), and other core information carried over from the previous

decision cycle (e.g., agent’s active goals). Previous methods encourage the LLM to

generate intermediate reasoning [332, 234], using the LLM’s own context as a form

of working memory. CoALA’s notion of working memory is more general: it is a

data structure that persists across LLM calls. On each LLM call, the LLM input is

synthesized from a subset of working memory (e.g., a prompt template and relevant

variables). The LLM output is then parsed back into other variables (e.g., an action

name and arguments) which are stored back in working memory and used to execute

the corresponding action (Figure 6.3A). Besides the LLM, the working memory also

interacts with long-term memories and grounding interfaces. It thus serves as the

central hub connecting different components of a language agent.

Episodic memory Episodic memory stores experience from earlier decision cycles.

This can consist of training input-output pairs [264], history event flows [334, 242],

game trajectories from previous episodes [356, 308], or other representations of the
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Figure 6.5: Agents’ action spaces can be divided into internal memory accesses and
external interactions with the world. Reasoning and retrieval actions are used to
support planning.

agent’s experiences. During the planning stage of a decision cycle, these episodes may

be retrieved into working memory to support reasoning. An agent can also write new

experiences from working to episodic memory as a form of learning (Section 6.4.5).

Semantic memory Semantic memory stores an agent’s knowledge about the world

and itself. Traditional NLP or RL approaches that leverage retrieval for reasoning or

decision-making initialize semantic memory from an external database for knowledge

support. For example, retrieval-augmented methods in NLP [162, 23, 44] can be

viewed as retrieving from a semantic memory of unstructured text (e.g., Wikipedia).

In RL, “reading to learn” approaches [24, 210, 101, 377] leverage game manuals and

facts as a semantic memory to affect the policy. While these examples essentially

employ a fixed, read-only semantic memory, language agents may also write new

knowledge obtained from LLM reasoning into semantic memory as a form of learning

(Section 6.4.5) to incrementally build up world knowledge from experience.

Procedural memory Language agents contain two forms of procedural memory:

implicit knowledge stored in the LLM weights, and explicit knowledge written in the

agent’s code. The agent’s code can be further divided into two types: procedures

that implement actions (reasoning, retrieval, grounding, and learning procedures),

and procedures that implement decision-making itself (Section 6.4.6). During a
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decision cycle, the LLM can be accessed via reasoning actions, and various code-based

procedures can be retrieved and executed. Unlike episodic or semantic memory that

may be initially empty or even absent, procedural memory must be initialized by the

designer with proper code to bootstrap the agent. Finally, while learning new actions

by writing to procedural memory is possible (Section 6.4.5), it is significantly riskier

than writing to episodic or semantic memory, as it can easily introduce bugs or allow

an agent to subvert its designers’ intentions.

6.4.2 Grounding actions

Grounding procedures execute external actions and process environmental feedback

into working memory as text. This effectively simplifies the agent’s interaction with the

outside world as a “text game” with textual observations and actions. We categorize

three kinds of external environments:

Physical environments Physical embodiment is the oldest instantiation envisioned

for AI agents [229]. It involves processing perceptual inputs (visual, audio, tactile)

into textual observations (e.g., via pre-trained captioning models), and affecting

the physical environments via robotic planners that take language-based commands.

Recent advances in LLMs have led to numerous robotic projects [7, 171, 284, 239, 261]

that leverage LLMs as a “brain” for robots to generate actions or plans in the physical

world. For perceptual input, vision-language models are typically used to convert

images to text [9, 290] providing additional context for the LLM [72, 118, 29, 28].

Dialogue with humans or other agents Classic linguistic interactions allow the

agent to accept instructions [338, 302, 45, 20] or learn from people [223, 289, 291, 319].

Agents capable of generating language may ask for help [261, 222, 221, 220] or

clarification [21, 267, 238, 303, 212] – or entertain or emotionally help people [375,

381, 245, 104, 194]. Recent work also investigates interaction among multiple language
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agents for social simulation [242, 131, 85], debate [39, 173, 73], improved safety [125],

or collabrative task solving [253, 341, 112, 71].

Digital environments This includes interacting with games [106, 57, 278, 318, 187],

APIs [269, 360, 241, 300], and websites [275, 209, 352, 384, 95, 65] as well as general

code execution [349, 158, 226]. Such digital grounding is cheaper and faster than

physical or human interaction. It is thus a convenient testbed for language agents and

has been studied with increasing intensity in recent years. In particular, for NLP tasks

that require augmentation of external knowledge or computation, stateless digital

APIs (e.g., search, calculator, translator) are often packaged as “tools” [241, 269, 347,

300, 254], which can be viewed as special “single-use” digital environments.

6.4.3 Retrieval actions

In CoALA, a retrieval procedure [166, 92] reads information from long-term memories

into working memory. Depending on the information and memory type, it could

be implemented in various ways, e.g., rule-based, sparse, or dense retrieval. For

example, Voyager [314] loads code-based skills from a skill library via dense retrieval

to interact with the Minecraft world – effectively retrieving grounding procedures from

a procedural memory. Generative Agents [242] retrieves relevant events from episodic

memory via a combination of recency (rule-based), importance (reasoning-based), and

relevance (embedding-based) scores. DocPrompting [383] proposes to leverage library

documents to assist code generation, which can be seen as retrieving knowledge from

semantic memory. While retrieval plays a key role in human decision-making [379, 376],

adaptive and context-specific recall remains understudied in language agents. In

Section 6.6, we suggest a principled integration of decision-making and retrieval as an

important future direction.
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6.4.4 Reasoning actions

Reasoning allows language agents to process the contents of working memory to

generate new information. Unlike retrieval (which reads from long-term memory into

working memory), reasoning reads from and writes to working memory. This allows the

agent to summarize and distill insights about the most recent observation [360, 248],

the most recent trajectory [276], or information retrieved from long-term memory [242].

Reasoning can be used to support learning (by writing the results into long-term

memory) or decision-making (by using the results as additional context for subsequent

LLM calls).

6.4.5 Learning actions

Learning occurs by writing information to long-term memory, which includes a spec-

trum of diverse procedures.

Updating episodic memory with experience It is common practice for RL

agents to store episodic trajectories to update a parametric policy [22, 250] or establish

a non-parametric policy [74, 308]. For language agents, added experiences in episodic

memory may be retrieved later as examples and bases for reasoning or decision-

making [334, 264, 242].

Updating semantic memory with knowledge Recent work [276, 242] has applied

LLMs to reason about raw experiences and store the resulting inferences in semantic

memory. For example, Reflexion [276] uses an LLM to reflect on failed episodes and

stores the results (e.g., “there is no dishwasher in kitchen”) as semantic knowledge to

be attached to LLM context for solving later episodes. Finally, work in robotics [43]

uses vision-language models to build a semantic map of the environment, which can

later be queried to execute instructions.
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Updating LLM parameters (procedural memory) The LLM weights represent

implicit procedural knowledge. These can be adjusted to an agent’s domain by

fine-tuning during the agent’s lifetime. Such fine-tuning can be accomplished via

supervised [183, 373] or imitation learning [123], reinforcement learning (RL) from

environment feedback [295], human feedback [RLHF; 53, 237, 209], or AI feedback [18,

188]. Classic LLM self-improvement methods [116, 367] use an external measure such

as consistency [323] to select generations to fine-tune on. In reinforcement learning

settings, this can be extended to use environmental feedback instead: for example,

XTX [308] periodically fine-tunes a small language model on high-scoring trajectories

stored in episodic memory, which serves as a robust “exploitation” policy to reach

exploration frontiers in the face of stochasity. Fine-tuning the agent’s LLM is a costly

form of learning; thus, present studies specify learning schedules. However, as training

becomes more efficient – or if agents utilize smaller subtask-specific LLMs – it may

be possible to allow language agents to autonomously determine when and how to

fine-tune their LLMs.

Updating agent code (procedural memory) CoALA allows agents to update

their source code, thus modifying the implementation of various procedures. These

can be broken down as follows:

• Updating reasoning [e.g., prompt templates; 88, 385]. For example, APE [385]

infers prompt instructions from input-output examples, then uses these instruc-

tions as part of the LLM prompt to assist task solving. Such a prompt update

can be seen as a form of learning to reason.

• Updating grounding [e.g., code-based skills; 171, 76, 314]. For example,

Voyager [314] maintains a curriculum library. Notably, current methods are

limited to creating new code skills to interact with external environments.
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• Updating retrieval. To our knowledge, these learning options are not studied

in recent language agents. Retrieval is usually considered a basic action designed

with some fixed implementation (e.g., BM25 or dense retrieval), but research in

query/document expansion [232, 317, 299] or retrieval distillion [126] may be

helpful for language agents to learn better retrieval procedures.

• Updating learning or decision-making. Finally, it is theoretically possible

for CoALA agents to learn new procedures for learning or decision-making,

thus providing significant adaptability. In general, however, updates to these

procedures are risky both for the agent’s functionality and alignment. At present,

we are not aware of any language agents that implement this form of learning;

we discuss such possibilities more in Section 6.6.

While RL agents usually fix one way of learning (e.g., Q-learning, PPO, or A3C)

and learn by updating model parameters, language agents can select from a diversity

of learning procedures. This allows them to learn rapidly by storing task-relevant

language (cheaper and quicker than parameter updates), and leverage multiple forms

of learning to compound their self-improvement (e.g., Generative Agents discussed in

Section 6.5).

Finally, while our discussion has mostly focused on adding to memory, modifying

and deleting (a case of “unlearning”) are understudied in recent language agents.

We address these areas more in Section 6.6.

6.4.6 Decision making

With various actions (grounding, learning, reasoning, retrieval) in the action space,

how should a language agent choose which action to apply? This is handled by the

decision-making procedure, which is effectively the top-level or “main” agent program.

CoALA structures this top-level program into decision cycles (Figure 6.4B) which yield
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an external grounding action (Section 6.4.2) or internal learning action (Section 6.4.5).

In each cycle, program code defines a sequence of reasoning and retrieval actions to

propose and evaluate alternatives (planning stage), then executes the selected action

(execution stage) – then the cycle loops again.

Planning stage During planning, reasoning and retrieval can be flexibly applied to

propose, evaluate, and select actions, and these sub-stages could interleave or iterate

to build up multi-step simulations [297] before taking an external action [358, 102].

It also enables agents to iteratively improve candidate solutions – for example, by

using the LLM to simulate them, identifying defects, and proposing modifications that

address those defects [140, 276].

• Proposal. The proposal sub-stage generates one or more action candidates.

The usual approach is to use reasoning (and optionally retrieval) to sample

one [120] or more [46, 323] external grounding actions from the LLM. For simple

domains with limited actions, the proposal stage might simply include all actions

(e.g., SayCan in Section 6.5). More sophisticated agents use if-else or while-if

code structures [314, 242]; while agents deployed in well-defined domains may

utilize structured simulators [105] to generate plausible rollouts [181, 62].

• Evaluation. If multiple actions are proposed, the evaluation sub-stage assigns a

value to each. This may use heuristic rules, LLM (perplexity) values [7], learned

values [356], LLM reasoning [358, 102], or some combination. Particularly, LLM

reasoning can help evaluate actions by internally simulating their grounding

feedback from the external world [102, 349].

• Selection. Given a set of actions and their values, the selection step either selects

one to execute or rejects them and loops back to the proposal step. Depending

on the form of action values, selection may occur via argmax, softmax, or an

alternative such as majority vote [323].
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Execution stage The selected action is applied by executing the relevant procedures

from the agent’s source code. Depending on the agent implementation, this might be

an external grounding action (e.g., an API call; Section 6.4.2) or an internal learning

action (e.g., a write to episodic memory; Section 6.4.5). An observation can be made

from the environment, providing feedback from the agent’s action, and the cycle loops

again.

Empirically, many early language agents simply use LLMs to propose an action [269],

a sequence of actions [119], or evaluate a fixed set of actions [7] without intermediate

reasoning or retrieval. Followup work [360, 276, 348, 175, 314, 242] has exploited

intermediate reasoning and retrieval to analyze the situation, make and maintain action

plans, refine the previous action given the environmental feedback, and leveraged

a more complex procedure to propose a single action. Most recently, research has

started to investigate more complex decision-making employing iterative proposal and

evaluation to consider multiple actions. These procedures are modeled after classical

planning algorithms: for example, Tree of Thoughts [358] and RAP [102] use LLMs to

implement BFS/DFS and Monte Carlo Tree Search [MCTS; 32] respectively. LLMs

are used to generate proposals (i.e., to simulate rollouts conditioned on an action) and

evaluate them (i.e., to value the outcome of the proposed action).

6.5 Case Studies

With variations and ablations of the memory modules, action space, and decision-

making procedures, CoALA can express a wide spectrum of language agents. Table 6.2

lists some popular recent methods across diverse domains — from Minecraft to robotics,

from pure reasoning to social simulacra. CoALA helps characterize their internal

mechanisms and reveal their similarities and differences in a simple and structured

way.
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Long-term External Internal Decision
Memory5 Grounding Actions Making

SayCan [7] - physical - evaluate
ReAct [360] - digital reason propose
Voyager [314] procedural digital reason/retrieve/learn propose
Generative Agents [242] episodic/semantic digital/agent reason/retrieve/learn propose
Tree of Thoughts [358] - digital6 reason propose, evaluate, select

Table 6.2: Some recent language agents cast into the CoALA framework.

SayCan [7] grounds a language model to robotic interactions in a kitchen to

satisfy user commands (e.g., “I just worked out, can you bring me a drink and a

snack to recover?”). Its long-term memory is procedural only (an LLM and a learned

value function). The action space is external only – a fixed set of 551 grounding

skills (e.g., “find the apple”, “go to the table”), with no internal actions of reasoning,

retrieval, or learning. During decision-making, SayCan evaluates each action using

a combination of LLM and learned values, which balance a skill’s usefulness and

groundedness. SayCan therefore employs the LLM (in conjunction with the learned

value function) as a single-step planner.

ReAct [360] is a language agent grounded to various digital environments (e.g.,

Wikipedia API, text game, website). Like SayCan, it lacks semantic or episodic

memory and therefore has no retrieval or learning actions. Its action space consists of

(internal) reasoning and (external) grounding. Its decision cycle is fixed to use a single

reasoning action to analyze the situation and (re)make action plans, then generates a

grounding action without evaluation or selection stages. ReAct can be considered the

simplest language agent that leverages both internal and external actions, and is the

initial work that demonstrates their synergizing effects: reasoning helps guide acting,

while acting provides environmental feedback to support reasoning.

Voyager [314] is a language agent grounded to the Minecraft API. Unlike SayCan,

which grounds to perception via the learned value function, Voyager’s grounding

5All agents contain some procedural memory (agent code and LLM weights), so here we only list
writable procedural memory.

6Special digital grounding with the only external action being submitting a final answer.
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is text-only. It has a long-term procedural memory that stores a library of code-

based grounding procedures a.k.a. skills (e.g., “combatZombie”, “craftStoneSword”).

This library is hierarchical: complex skills can use simpler skills as sub-procedures

(e.g., “combatZombie” may call “craftStoneSword” if no sword is in inventory). Most

impressively, its action space has all four kinds of actions: grounding, reasoning,

retrieval, and learning (by adding new grounding procedures). During a decision

cycle, Voyager first reasons to propose a new task objective if it is missing in the

working memory, then reasons to propose a code-based grounding procedure to solve

the task. In the next decision cycle, Voyager reasons over the environmental feedback

to determine task completion. If successful, Voyager selects a learning action adding

the grounding procedure to procedural memory; otherwise, it uses reasoning to refine

the code and re-executes it. The importance of long-term memory and procedural

learning is empirically verified by comparing to baselines like ReAct and AutoGPT

and ablations without the procedural memory. Voyager is shown to better explore

areas, master the tech tree, and zero-shot generalize to unseen tasks.

Generative Agents [242] are language agents grounded to a sandbox game

affording interaction with the environment and other agents. Its action space also has

all four kinds of actions: grounding, reasoning, retrieval, and learning. Each agent has

a long-term episodic memory that stores events in a list. These agents use retrieval and

reasoning to generate reflections on their episodic memory (e.g., “I like to ski now.”)

which are then written to long-term semantic memory. During decision-making, it

retrieves relevant reflections from semantic memory, then reasons to make a high-level

plan of the day. While executing the plan, the agent receives a stream of grounding

observations; it can reason over these to maintain or adjust the plan.

Tree of Thoughts (ToT) [358] can be seen as a special kind of language agent

with only one external action: submitting a final solution to a reasoning problem

(game of 24, creative writing, crosswords puzzle). It has no long-term memory, and
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only reasoning in its internal action space, but differs from all previous agents in its

deliberate decision-making. During planning, ToT iteratively proposes, evaluates, and

selects “thoughts” (reasoning actions) based on LLM reasoning, and maintains them

via a tree search algorithm to enable global exploration as well as local backtrack and

foresight.

6.6 Actionable Insights

Compared to some recent empirical surveys around language agents [203, 333, 315],

CoALA offers a theoretical framework grounded in the well-established research of

cognitive architectures. This leads to a unique and complementary set of actionable

insights.

Modular agents: thinking beyond monoliths Perhaps our most important

suggestion is that agents should be structured and modular. Practically, just as

standardized software is used across robotics platforms [256, 195], a framework for

language agents would consolidate technical investment and improve compatibility.

• In academic research, standardized terms allow conceptual comparisons across

works (Table 6.2), and open-source implementations would further facilitate

modular plug-and-play and re-use. For example, the theoretical framework of

Markov Decision Processes [252] provides a standardized set of concepts and ter-

minology (e.g., state, action, reward, transition) for reinforcement learning [295].

Correspondingly, empirical frameworks like OpenAI Gym [27] provided stan-

dardized abstractions (e.g., obs, reward, done, info = env.step(action))

that facilitate empirical RL work. Thus, it would be timely and impactful to also

implement useful abstractions (e.g., Memory, Action, Agent classes) for language

agents, and cast simpler agents into such an empirical CoALA framework as

examples for building more complex agents.
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• In industry applications, maintaining a single company-wide “language

agent library” would reduce technical debt [271, 193] by facilitating testing and

component re-use across individual agent deployments. It could also standardize

the customer experience: rather than interacting with a hodgepodge of language

agents developed by individual teams, end users would experience a context-

specific instantiation of the same base agent.

• LLMs vs. code in agent design. CoALA agents possess two forms of proce-

dural memory: agent code (deterministic rules) and LLM parameters (a large,

stochastic production system). Agent code is interpretable and extensible, but

often brittle in face of stochasticity and limited to address situations the designer

anticipates. In contrast, LLM parameters are hard to interpret, but offer signifi-

cant zero-shot flexibility in new contexts [119]. CoALA thus suggests using code

sparingly to implement generic algorithms that complement LLM limitations,

e.g., implementing tree search to mitigate myopia induced by autoregressive

generation [358, 102].

Agent design: thinking beyond simple reasoning CoALA defines agents over

three distinct concepts: (i) internal memory, (ii) a set of possible internal and external

actions, and (iii) a decision making procedure over those actions. Using CoALA

to develop an application-specific agent consists of specifying implementations for

each of these components in turn. We assume that the agent’s environment and

external action space are given, and show how CoALA can be used to determine

an appropriate high-level architecture. For example, we can imagine designing a

personalized retail assistant [352] that helps users find relevant items based on their

queries and purchasing history. In this case, the external actions would consist of

dialogue or returning search results to the user.
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• Determine what memory modules are necessary. In our retail assistant

example, it would be helpful for the agent to have semantic memory containing

the set of items for sale, as well as episodic memory about each customer’s

previous purchases and interactions. It will need procedural memory defining

functions to query these datastores, as well as working memory to track the

dialogue state.

• Define the agent’s internal action space. This consists primarily of defining

read and write access to each of the agent’s memory modules. In our example,

the agent should have read and write access to episodic memory (so it can

store new interactions with customers), but read-only access to semantic and

procedural memory (since it should not update the inventory or its own code).

• Define the decision-making procedure. This step specifies how reasoning

and retrieval actions are taken in order to choose an external or learning action.

In general, this requires a tradeoff between performance and generalization: more

complex procedures can better fit to a particular problem (e.g., Voyager [314]

for Minecraft) while simpler ones are more domain-agnostic and generalizable

(e.g., ReAct [360]). For our retail assistant, we may want to encourage retrieval

of episodic memory of interactions with a user to provide a prior over their

search intent, as well as an explicit evaluation step reasoning about whether

a particular set of search results will satisfy that intent. We can simplify the

decision procedure by deferring learning to the end of the interaction [276, 242],

summarizing the episode prior to storing it in episodic memory.

Structured reasoning: thinking beyond prompt engineering Early work on

prompt engineering manipulated the LLM’s input and output via low-level string

operations. CoALA suggests a more structured reasoning procedure to update working

memory variables.
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• Prompting frameworks like LangChain [155] and LlamaIndex [189] can be

used to define higher-level sequences of reasoning steps, reducing the burden of

reasoning per LLM call and the low-level prompt crafting efforts. Structural

output parsing solutions such as Guidance [94] and OpenAI function call-

ing [235] can help update working memory variables. Defining and building good

working memory modules will also be an important direction of future research.

Such modules may be especially important for industry solutions where LLM

reasoning needs to seamlessly integrate with large-scale code infrastructure.

• Reasoning usecases in agents can inform and reshape LLM training in

terms of the types (e.g., reasoning for self-evaluation, reflection, action generation,

etc.) and formats (e.g., CoT [332], ReAct [360], Reflexion [276]) of training

instances. By default, existing LLMs are trained and optimized for NLP tasks,

but agent applications have explored new modes of LLM reasoning (e.g., self-

evaluation) that have proven broadly useful. LLMs trained or finetuned towards

these capabilities will more likely be the backbones of future agents.

Long-term memory: thinking beyond retrieval augmentation . While

traditional retrieval-augmented language models [98, 162, 23] only read from human-

written corpora, memory-augmented language agents can both read and write self-

generated content autonomously. This opens up numerous possibilities for efficient

lifelong learning.

• Combining existing human knowledge with new experience and skills

can help agents bootstrap to learn efficiently. For example, a code-writing agent

could be endowed with semantic programming knowledge in the form of manuals

or textbooks. It could then generate its own episodic knowledge from experience;

reflect on these experiences to generate new semantic knowledge; and gradually

create procedural knowledge in the form of a code library storing useful methods.
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• Integrating retrieval and reasoning can help to better ground planning.

Recent computational psychological models implicate an integrated process

of memory recall and decision-making [379, 376] – suggesting that adaptive

mechanisms interleaving memory search and forward simulation will allow agents

to make the most of their knowledge.

Learning: thinking beyond in-context learning or finetuning CoALA’s

definition of “learning” encompasses these methods, but extends further to storing

new experience or knowledge, or writing new agent code (Section 6.4.5). Important

future directions include:

• Meta-learning by modifying agent code would allow agents to learn more

effectively. For example, learning better retrieval procedures could enable agents

to make better use of their experience. Recent expansion-based techniques [232,

317, 299] could allow agents to reason about when certain knowledge would

be useful, and store this as metadata to facilitate later recall. These forms of

meta-learning would enable agents to go beyond human-written code, yet are

understudied due to their difficulty and risk.

• New forms of learning (and unlearning) could include fine-tuning smaller

models for specific reasoning sub-tasks [367, 116, 7], deleting unneeded memory

items for “unlearning” [225], and studying the interaction effects between multiple

forms of learning [308, 242, 344, 137].

Action space: thinking beyond external tools or actions Although “action

space” is a standard term in reinforcement learning, it has been used sparingly with

language agents. CoALA argues for defining a clear and task-suitable action space

with both internal (reasoning, retrieval, learning) and external (grounding) actions,

which will help systematize and inform the agent design.
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• Size of the action space. More capable agents (e.g., Voyager, Generative

Agents) have larger action spaces – which in turn means they face a more

complex decision-making problem. As a result, these agents rely on more

customized or hand-crafted decision procedures. The tradeoff of the action space

vs. decision-making complexities is a basic problem to be considered before agent

development, and taking the minimal action space necessary to solve a given

task might be preferred.

• Safety of the action space. Some parts of the action space are inherently

riskier. “Learning” actions (especially procedural deletion and modification)

could cause internal harm, while “grounding” actions (e.g., “rm” in bash terminal,

harmful speech in human dialog, holding a knife in physical environments) could

cause external harm. Today, safety measures are typically task-specific heuristics

(e.g., remove “os” operations in Python [46], filter keywords in dialog [52, 72],

limit robots to controlled environments [7]). However, as agents are grounded to

more complex environments with richer internal mechanisms, it may be necessary

to specify and ablate the agent’s action space for worst-case scenario prediction

and prevention [353].

Decision making: thinking beyond action generation We believe one of the

most exciting future directions for language agents is decision-making: as detailed

in Section 6.4.6, most works are still confined to proposing (or directly generating)

a single action. Present agents have just scratched the surface of more deliberate,

propose-evaluate-select decision-making procedures.

• Mixing language-based reasoning and code-based planning may offer

the best of both worlds. Existing approaches either plan directly in natural

language [120, 7] or use LLMs to translate from natural language to structured

world models [339, 181, 370, 163, 93, 283, 282]. Future work could integrate
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these: just as Soar incorporates a simulator for physical reasoning [149], agents

may write and execute simulation code on the fly to evaluate the consequences

of plans. See Section 6.7 for more discussion.

• Extending deliberative reasoning to real-world settings. Initial works

have implemented classical planning and tree search [358, 102, 181, 62], using

toy tasks such as game of 24 or block building. Extending these schemes to more

complicated tasks with grounding [254] and long-term memory is an exciting

direction.

• Metareasoning to improve efficiency. LLM calls are both slow and com-

putationally intensive. Using LLMs for decision-making entails a balance

between their computational cost and the utility of the resulting improved

plan. Most LLM reasoning methods fix a search budget by specifying a

depth of reasoning [358], but humans appear to adaptively allocate compu-

tation [265, 174, 37, 89]. Future work should develop mechanisms to estimate

the utility of planning [147] and modify the decision procedure accordingly,

either via amortization [fine-tuning the LLM based on the results of previous

actions, e.g. 224, 100], routing among several decision sub-procedures (e.g., Re-

Act [360] investigated backing off to CoT [332] and vice versa), or updates to

the decision-making procedure.

• Calibration and alignment. More complex decision-making is currently bottle-

necked by issues such as over-confidence and miscalibration [128, 25, 49], misalign-

ment with human values or bias [172, 79], hallucinations in self-evaluation [276],

and lack of human-in-the-loop mechanisms in face of uncertainties [222, 261].

Solving these issues will significantly improve LLMs’ utilities as agent backbones.
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6.7 Discussion

In addition to the practical insights presented above, CoALA raises a number of open

conceptual questions. We briefly highlight the most interesting as important directions

for future research and debate.

LLMs vs VLMs: should reasoning be language-only or multimodal? Most

language agents use language-only models for decision-making [360, 314, 358], em-

ploying a separate captioning model to convert environment observations to text

when necessary [7, 368]. However, the latest generation of language models are

multimodal, allowing interleaved image and text input [236, 9, 301, 165]. Language

agents built on such multimodal models natively reason over both image and text

input [19, 77, 184, 113, 72], allowing them to ingest perceptual data and directly

produce actions. This bypasses the lossy image-to-text conversion; however, it also

tightly couples the reasoning and planning process to the model’s input modalities.

At a high level, the two approaches can be seen as different tokenization schemes

to convert non-linguistic modalities into the core reasoning model’s language domain.

The modular approach uses a separate image-to-text model to convert perceptual

data into language [7, 368], while the integrated approach projects images directly

into the language model’s representation space [19, 77, 184]. Integrated, multimodal

reasoning may allow for more human-like behaviors: a VLM-based agent could “see”

a webpage, whereas a LLM-based agent would more likely be given raw HTML.

However, coupling the agent’s perception and reasoning systems makes the agent

more domain-specific and difficult to update. In either case, the basic architectural

principles described by CoALA — internal memories, a structured action space, and

generalized decision-making — can be used to guide agent design.
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Internal vs. external: what is the boundary between an agent and its

environment? While humans or robots are clearly distinct from their embodied

environment, digital language agents have less clear boundaries. For example, is

a Wikipedia database an internal semantic memory or an external digital environ-

ment [360]? If an agent iteratively executes and improves code before submitting an

answer [276, 349], is the code execution internal or external? If a method consists of

proposal and evaluation prompts [358], should it be considered a single agent or two

collaborating simpler agents (proposer and evaluator)?

We suggest the boundary question can be answered in terms of controllability and

coupling. For example, Wikipedia is not controllable: it is an external environment that

may be unexpectedly modified by other users. However, an offline version that only

the agent may write to is controllable, and thus can be considered an internal memory.

Similarly, code execution on a internal virtual environment should be considered an

internal reasoning action, whereas code execution on an external machine (which may

possess security vulnerabilities) should be considered an external grounding action.

Lastly, if aspects of the agent – such as proposal and evaluation prompts – are designed

for and dependent on each other, then they are tightly coupled and best conceptualized

as components in an individual agent. In contrast, if the steps are independently

useful, a multi-agent perspective may be more appropriate. While these dilemmas are

primarily conceptual, such understanding can support agent design and help the field

align on shared terminology. Practioners may also just choose their preferred framing,

as long as it is consistent and useful for their own work.

Physical vs. digital: what differences beget attention? While animals only

live once in the physical world, digital environments (e.g., the Internet) often allow

sequential (via resets) and parallel trials. This means digital agents can more boldly

explore (e.g., open a million webpages) and self-clone for parallel task solving (e.g.,
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a million web agents try different web paths), which may result in decision-making

procedures different from current ones inspired by human cognition [91].

Learning vs. acting: how should agents continuously and autonomously

learn? In the CoALA framework, learning is a result action of a decision-making

cycle just like grounding: the agent deliberately chooses to commit information to long-

term memory. This is in contrast to most agents, which simply fix a learning schedule

and only use decison making for external actions. Biological agents, however, do not

have this luxury: they must balance learning against external actions in their lifetime,

choosing when and what to learn [199]. More flexible language agents [314, 242] would

follow a similar design and treat learning on par with external actions. Learning could

be proposed as a possible action during regular decision-making, allowing the agent

to “defer” it until the appropriate time.

GPT-4 vs GPT-N: how would agent design change with more powerful

LLMs? Agent design is a moving target as new LLM capabilities emerge with

scale [331]. For example, earlier language models such as GPT-2 [258] would not

support LLM agents — indeed, work at that time needed to combine GPT-2 with

reinforcement learning for action generation [356]; GPT-3 [30] unlocked flexible few-

shot and zero-shot reasoning for NLP tasks; while only GPT-4 [236] starts to afford

more reliable self-evaluation [268, 276, 358] and self-refinement [196, 47]. Will future

LLMs further reduce the need for coded rules and extra-learned models? Will this

necessitate changes to the CoALA framework? As a thought experiment, imagine

GPT-N could “simulate” memory, grounding, learning, and decision-making in context:

list all the possible actions, simulate and evaluate each one, and maintain its entire

long-term memory explicitly in a very long context. Or even more boldly: perhaps

GPT-N+1 succeeds at generating the next action by simulating these implicitly in

neurons, without any intermediate reasoning in context. While these extreme cases
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seem unlikely in the immediate future, incremental improvements may alter the

importance of different CoALA components. For example, a longer context window

could reduce the importance of long-term memory, while more powerful reasoning for

internal evaluation and simulation could allow longer-horizon planning. In general,

LLMs are not subject to biological limitations [91], and their emergent properties

have been difficult to predict. Nonetheless, CoALA – and cognitive science more

generally – may still help organize tasks where language agents succeed or fail, and

suggest code-based procedures to complement a given LLM on a given task. Even

in the most extreme case, where GPT implements all of CoALA’s mechanisms in

neurons, it may be helpful to leverage CoALA as a conceptual guide to discover and

interpret those implicit circuits. Of course, as discussed in Section 6.6, agent usecases

will also help discover, define and shape LLM capabilities. Similar to how chips and

computer architectures have co-evolved, language model and agent design should also

develop a reciprocal path forward.
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Chapter 7

Conclusion

In this thesis, we establish the study of language agents as an independent, holistic,

and interdisciplinary research subject, which applies language models for autonomous

agents, enables exciting real-world applications such as automating various computer

and web tasks, and synthesizes fundamental insights in modern machine learning,

natural language processing, and cognitive science.

7.1 Ongoing and Future Work

Following up on actionable insights proposed in Section 6.6, here are some more

concrete future directions that I am excited to work on.

Training LLMs for agents. Most open-source LLMs perform poorly on agent

tasks as they were not trained to act, and proprietary models like GPT-4 are expensive

to use and lack transparency. My work has shown training LLMs how to reason and

use tools leads to a stronger generalization than either alone (Chapter 4). I am excited

to work with NLP and systems researchers to develop more effective and efficient

open-source LLMs for agents, and establish a reciprocating cycle where better LLMs

enable exploration of agent design, and strong agents in turn provide training data
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to shape LLMs. I also want to work with CV and RL researchers to build agent

backbones in multimodal and embodied setups, like a general-purpose computer agent

reading screen pixels and using the mouse and keyboard.

Robust and safe deployment. Language agents indicate great opportunities for

task automation, personal freedom, and social progress, but also enhanced potential

harms like deleting files or attacking servers. I believe it takes concrete and multidis-

ciplinary efforts to better understand and control these emerging systems, such as

statistical and mathematical characterization [355] of their capabilities and robustness,

defining threat models and finding defenses, and engaging ethics, law, and policy

experts in capturing and shaping their societal impact [353]. Across these efforts, it is

important to have a holistic view of not just LLMs, but how they are and will be used

to interact with the world. CoALA [357] could help organize and guide these efforts,

e.g., we could analyze and control risks by defining the action space of language agents

(Chapter 6). Another important direction is automated coding [349, 129] (Chapter 3),

as agent-generated code can act in more interpretable and reliable ways than agents.

Knowledge and scientific discovery. So far, the success of LLMs and language

agents relies mostly on imitating patterns of how humans write and act, thus happening

mostly on tasks that humans have already explored and summarized knowledge about.

But to go beyond imitation, we need to equip language agents with intrinsic rewards like

curiosity [354], means to planning [358] (Chapter 5) and reinforcement learning [276]

using such intrinsic rewards, and a long-term memory [357] to maintain experience,

knowledge, and skills. I envision agents that navigate gigantic networks of knowledge

(e.g., via ArXiv APIs) to answer self-asked questions, and learn by checking follow-up

research via citations [299], interacting with humans [294], or coding [349] (Chapter 3),

similar to how PhD students expand human knowledge.
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Understanding and helping humans. My work has been inspired by human

cognition [358, 357] to build autonomous agents that solve hard tasks with minimal

guidance. But to deploy language agents in our society, they will need to infer human

intention, invoke and incorporate human feedback, and collaborate with humans or

other agents. I hope to engage insights from pragmatics, game theory, social cognition,

and HCI to understand how humans perceive language agents [294], and how agents

could in turn better model and interact with humans. Particularly, I want to develop

a tutor agent with a long-term memory [357] of agent-student interaction histories and

the student profile to personalize education. Beyond teaching existing knowledge, I

also envision agents communicate their discovered concepts (e.g., Move 37 of AlphaGo)

to humans by linking their “emergent languages” to human ones [359]. These will help

ensure that AI complements and augments human abilities, rather than surpassing or

replacing them.

151



Bibliography

[1] Josh Abramson, Arun Ahuja, Iain Barr, Arthur Brussee, Federico Carnevale,
Mary Cassin, Rachita Chhaparia, Stephen Clark, Bogdan Damoc, Andrew
Dudzik, Petko Georgiev, Aurelia Guy, Tim Harley, Felix Hill, Alden Hung,
Zachary Kenton, Jessica Landon, Timothy Lillicrap, Kory Mathewson, Soňa
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