
Language Agents

1

From next token prediction to digital automation

LLM

Shunyu Yao

Autonomous agents to interact with the world

2

action

feedback

Agent Environment

Rule-based agents: manual design

Learning-based agents: trial-and-error

Language agents: reasoning to act

Interact with humans / physical world

Interact with games / simulation

Interact with digital world (e.g., Internet)

 Challenge 1: Accessible methods for general agents

3

Takes millions of
lines of rules (by
domain experts)

Takes millions of
training iterations
(by RL experts)

Hard to generalize XX

Intensive to build
(Even for experts)

Challenge 2: Scalable benchmarks for practical tasks

4

Practical
(Can build agents for useful tasks)

Scalable
(Easy data/reward collection)

?
(But not scalable) (But not practical)

My research

5

Physical Human Game Web SoftwareCode

Part 1. Benchmarking agents via digital automation

✅ Practical

✅ Scalable

✅ Challenging

[NeurIPS’22, NAACL’22, ACL’23, NeurIPS’23, ICLR’24, ICLR’24]

My research

6

LLM

Let’s think about
the situation…

Part 2. Building language agents that reason to act

Part 1. Benchmarking agents via digital automation

✅ General

✅ Generalizable

[EMNLP’20, ICLR’23, NeurIPS’23, NeurIPS’23]

[NeurIPS’22, NAACL’22, ACL’23, NeurIPS’23, ICLR’24, ICLR’24]

My research

7

Part 3. Principled framework for language agents

Part 2. Building language agents that reason to act

Part 1. Benchmarking agents via digital automation

[EMNLP’20, ICLR’23, NeurIPS’23, NeurIPS’23]

[NeurIPS’22, NAACL’22, ACL’23, NeurIPS’23, ICLR’24, ICLR’24]

[TMLR’24]

8

Benchmarking agents
via digital automation
WebShop: Towards Scalable Real-World Web Interaction with Grounded Language Agents
Yao*, Chen*, Yang, Narasimhan. NeurIPS 2022

1

Digital automation

9

• Tremendous practical values, but little progress (think about Siri)

• Underlying research challenges:

• Reasoning over real-world language (and other modalities)

• Decision making over open-ended actions and long horizon

• Solving these is also key for robot navigation, planning, coordination

Travel Policy

Service Status (US2)

Cookie Preferences

Last signed in: 02/20/2024 03:07 pm

© Copyright 2024 - SAP Concur - All Rights Reserved

Travel Expense Approvals TripLink App Center
Help

Profile 

Manage Expenses

Home  Expense  Manage Expenses  OpenAI credits for research  New Expense

New Expense Cancel Save Expense

* Required field

 Allocate

Save Expense Save and Add Another Cancel

Receipt

Hide Receipt Details Itemizations

*

Ground Transportation - Limo, Taxi, Other

Expense Type

 

*

11/22/2023 

Transaction Date *Business Purpose

Trip ID *Vendor Name

City



*

Cash/Out of Pocket

Payment Type



*Amount *

US, Dollar (USD)

Currency

 

*

Domestic

Domestic or International?



0/500Comment



Add Receipt

Click to upload or drag and drop files to upload a new receipt.
Valid file types for upload are .png, .jpg, .jpeg, .pdf, .tif or .tiff.

5MB limit per file.

We gratefully acknowledge support from
the Simons Foundation and member institutions.

About

Help

Contact

Subscribe

Copyright

Privacy Policy

Web Accessibility Assistance

arXiv Operational Status
Get status notifications via email or slack

Help | Advanced Search

Search... All fields Search

Login

Advanced Search

Showing 1–50 of 55,216 results for all: language modelsSearch v0.5.6 released 2020-02-24

1. arXiv:2402.19475 [pdf, other]

The Counterfeit Conundrum: Can Code Language Models Grasp the Nuances of Their
Incorrect Generations?
Authors: Alex Gu, Wen-Ding Li, Naman Jain, Theo X. Olausson, Celine Lee, Koushik Sen, Armando Solar-Lezama

Abstract: While language… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

Comments: 54 pages, 25 figures

2. arXiv:2402.19474 [pdf, other]

The All-Seeing Project V2: Towards General Relation Comprehension of the Open World
Authors: Weiyun Wang, Yiming Ren, Haowen Luo, Tiantong Li, Chenxiang Yan, Zhe Chen, Wenhai Wang, Qingyun Li,

Lewei Lu, Xizhou Zhu, Yu Qiao, Jifeng Dai

Abstract: We present the All-Seeing Project V2: a new model and dataset designed for understanding object

relations in images. Specifically, we propose the All-Seeing… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

Comments: Technical Report

3. arXiv:2402.19471 [pdf, other]

Loose LIPS Sink Ships: Asking Questions in Battleship with Language-Informed Program
Sampling
Authors: Gabriel Grand, Valerio Pepe, Jacob Andreas, Joshua B. Tenenbaum

Abstract: Questions combine our mastery of language with our remarkable facility for reasoning about

uncertainty. How do people navigate vast hypothesis spaces to pose informative questions given limited cognitive

resources? We study these tradeo!s in a classic grounded question-asking task based on the board game

Battleship. Our… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

4. arXiv:2402.19469 [pdf, other]

Humanoid Locomotion as Next Token Prediction
Authors: Ilija Radosavovic, Bike Zhang, Baifeng Shi, Jathushan Rajasegaran, Sarthak Kamat, Trevor Darrell, Koushil

Sreenath, Jitendra Malik

Abstract: We cast real-world humanoid control as a next token prediction problem, akin to predicting the next

word in language. Our… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

5. arXiv:2402.19467 [pdf, other]

TV-TREES: Multimodal Entailment Trees for Neuro-Symbolic Video Reasoning
Authors: Kate Sanders, Nathaniel Weir, Benjamin Van Durme

Abstract: It is challenging to perform question-answering over complex, multimodal content such as television

clips. This is in part because current video-language models rely on single-modality reasoning, have lowered

performance on long inputs, and lack interpetability. We propose TV-TREES, the first multimodal entailment tree…

▽ More

Submitted 29 February, 2024; originally announced February 2024.

Comments: 9 pages, preprint

ACM Class: I.2.7; I.2.10

6. arXiv:2402.19465 [pdf, other]

Towards Tracing Trustworthiness Dynamics: Revisiting Pre-training Period of Large
Language Models
Authors: Chen Qian, Jie Zhang, Wei Yao, Dongrui Liu, Zhenfei Yin, Yu Qiao, Yong Liu, Jing Shao

Abstract: Ensuring the trustworthiness of large language… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

7. arXiv:2402.19464 [pdf, other]

Curiosity-driven Red-teaming for Large Language Models
Authors: Zhang-Wei Hong, Idan Shenfeld, Tsun-Hsuan Wang, Yung-Sung Chuang, Aldo Pareja, James Glass, Akash

Srivastava, Pulkit Agrawal

Abstract: Large language… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

Comments: Published at ICLR 2024

8. arXiv:2402.19462 [pdf, other]

Accelerating materials discovery for polymer solar cells: Data-driven insights enabled by
natural language processing
Authors: Pranav Shetty, Aishat Adeboye, Sonakshi Gupta, Chao Zhang, Rampi Ramprasad

Abstract: We present a natural language processing pipeline that was used to extract polymer solar cell property

data from the literature and simulate various active learning strategies. While data-driven methods have been well

established to discover novel materials faster than Edisonian trial-and-error approaches, their benefits have not

been quantified. Our approac… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

9. arXiv:2402.19450 [pdf, other]

Functional Benchmarks for Robust Evaluation of Reasoning Performance, and the
Reasoning Gap
Authors: Saurabh Srivastava, Annarose M B, Anto P V, Shashank Menon, Ajay Sukumar, Adwaith Samod T, Alan

Philipose, Stevin Prince, Sooraj Thomas

Abstract: We propose a framework for robust evaluation of reasoning capabilities of language… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

Comments: 37 pages, 10 figures

10. arXiv:2402.19449 [pdf, other]

Heavy-Tailed Class Imbalance and Why Adam Outperforms Gradient Descent on
Language Models
Authors: Frederik Kunstner, Robin Yadav, Alan Milligan, Mark Schmidt, Alberto Bietti

Abstract: Adam has been shown to outperform gradient descent in optimizing large language transformers

empirically, and by a larger margin than on other tasks, but it is unclear why this happens. We show that the heavy-

tailed class imbalance found in… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

11. arXiv:2402.19446 [pdf, other]

ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL
Authors: Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, Aviral Kumar

Abstract: A broad use case of large language… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

12. arXiv:2402.19431 [pdf, other] doi 10.1145/3643916.3644403

Compositional API Recommendation for Library-Oriented Code Generation
Authors: Zexiong Ma, Shengnan An, Bing Xie, Zeqi Lin

Abstract: Large language models (LLMs) have achieved exceptional performance in code generation. However,

the performance remains unsatisfactory in generating library-oriented code, especially for the libraries not present

in the training data of LLMs. Previous work utilizes API recommendation technology to help LLMs use librari…

▽ More

Submitted 29 February, 2024; originally announced February 2024.

Journal ref: 32nd IEEE/ACM International Conference on Program Comprehension (ICPC 2024), Apr 2024, Lisboa, Portugal

13. arXiv:2402.19427 [pdf, other]

Gri!n: Mixing Gated Linear Recurrences with Local Attention for E!cient Language
Models
Authors: Soham De, Samuel L. Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Albert Gu,

Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, Guillaume Desjardins, Arnaud Doucet, David

Budden, Yee Whye Teh, Razvan Pascanu, Nando De Freitas, Caglar Gulcehre

Abstract: …and scale e"ciently on long sequences, but they are di"cult to train and hard to scale. We propose

Hawk, an RNN with gated linear recurrences, and Gri"n, a hybrid model that mixes gated linear recurrences with

local attention. Hawk exceeds the reported performance of Mamba on downstream tasks, while Gri"n matches the

performance of Llama-2 despite be… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

Comments: 25 pages, 11 figures

14. arXiv:2402.19421 [pdf, other]

Crafting Knowledge: Exploring the Creative Mechanisms of Chat-Based Search Engines
Authors: Lijia Ma, Xingchen Xu, Yong Tan

Abstract: …digital information dissemination, search engines act as pivotal conduits linking information seekers

with providers. The advent of chat-based search engines utilizing Large Language… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

Comments: 38 pages, 2 figures, 7 tables

ACM Class: J.4

15. arXiv:2402.19411 [pdf, ps, other]

PaECTER: Patent-level Representation Learning using Citation-informed Transformers
Authors: Mainak Ghosh, Sebastian Erhardt, Michael E. Rose, Erik Buunk, Dietmar Harho!

Abstract: …with examiner-added citation information to generate numerical representations for patent

documents. PaECTER performs better in similarity tasks than current state-of-the-art models used in the patent

domain. More specifically, our… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

Comments: 7 pages, 3 figures

16. arXiv:2402.19406 [pdf, other]

On the Scaling Laws of Geographical Representation in Language Models
Authors: Nathan Godey, Éric de la Clergerie, Benoît Sagot

Abstract: Language… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

Comments: Accepted at LREC-COLING 2024

17. arXiv:2402.19404 [pdf, other]

Entity-Aware Multimodal Alignment Framework for News Image Captioning
Authors: Junzhe Zhang, Huixuan Zhang, Xiaojun Wan

Abstract: News image captioning task is a variant of image captioning task which requires model to generate a

more informative caption with news image and the associated news article. Multimodal Large… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

18. arXiv:2402.19379 [pdf, other]

Wisdom of the Silicon Crowd: LLM Ensemble Prediction Capabilities Match Human Crowd
Accuracy
Authors: Philipp Schoenegger, Indre Tuminauskaite, Peter S. Park, Philip E. Tetlock

Abstract: …in which predictions about future events are significantly improved by aggregating across a crowd of

individual forecasters. Past work on the forecasting ability of large language… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

Comments: 20 pages; 13 visualizations (nine figures, four tables)

19. arXiv:2402.19371 [pdf]

OpenMedLM: Prompt engineering can out-perform fine-tuning in medical question-
answering with open-source large language models
Authors: Jenish Maharjan, Anurag Garikipati, Navan Preet Singh, Leo Cyrus, Mayank Sharma, Madalina Ciobanu,

Gina Barnes, Rahul Thapa, Qingqing Mao, Ritankar Das

Abstract: …thus costly, amounts of computational power. Many of the top performing LLMs are proprietary and

their access is limited to very few research groups. However, open-source (OS) models represent a key area of

growth for medical LLMs due to significant improvements in performance and an inherent ability to provide the

transparency and compliance required in he… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

20. arXiv:2402.19366 [pdf, other]

SoK: Exploring the Potential of Large Language Models for Improving Digital Forensic
Investigation E!ciency
Authors: Akila Wickramasekara, Frank Breitinger, Mark Scanlon

Abstract: …ability to conduct investigations promptly. Consequently, this systemisation of knowledge paper delves

into the potential and e!ectiveness of integrating Large Language… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

21. arXiv:2402.19361 [pdf, other]

Watermark Stealing in Large Language Models
Authors: Nikola Jovanović, Robin Staab, Martin Vechev

Abstract: LLM watermarking has attracted attention as a promising way to detect AI-generated content, with some

works suggesting that current schemes may already be fit for deployment. In this work we dispute this claim,

identifying watermark stealing (WS) as a fundamental vulnerability of these schemes. We show that querying the

API of the watermarked LLM to approximately reverse-engineer a watermark enabl… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

22. arXiv:2402.19350 [pdf, other]

Prompting Explicit and Implicit Knowledge for Multi-hop Question Answering Based on
Human Reading Process
Authors: Guangming Huang, Yunfei Long, Cunjin Luo, Jiaxing Shen, Xia Sun

Abstract: Pre-trained language… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

Comments: This paper has been accepted at LREC-COLING 2024

23. arXiv:2402.19348 [pdf, other]

Deep Learning for Cross-Domain Data Fusion in Urban Computing: Taxonomy, Advances,
and Outlook
Authors: Xingchen Zou, Yibo Yan, Xixuan Hao, Yuehong Hu, Haomin Wen, Erdong Liu, Junbo Zhang, Yong Li, Tianrui

Li, Yu Zheng, Yuxuan Liang

Abstract: …with previous surveys, we focus more on the synergy of deep learning methods with urban computing

applications. Furthermore, we shed light on the interplay between Large Language Models (LLMs) and urban

computing, postulating future research directions that could revolutionize the field. We firmly believe that the

taxo… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

24. arXiv:2402.19334 [pdf, other]

Here's a Free Lunch: Sanitizing Backdoored Models with Model Merge
Authors: Ansh Arora, Xuanli He, Maximilian Mozes, Srinibas Swain, Mark Dras, Qiongkai Xu

Abstract: The democratization of pre-trained language… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

Comments: work in progress

25. arXiv:2402.19333 [pdf, other]

Compact Speech Translation Models via Discrete Speech Units Pretraining
Authors: Tsz Kin Lam, Alexandra Birch, Barry Haddow

Abstract: Using Self-Supervised Learning (SSL) as model initialization is now common to obtain strong results in

Speech Translation (ST). However, they also impose a large memory footprint, hindering on-device deployment. In

this paper, we leverage the SSL… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

26. arXiv:2402.19326 [pdf, other]

Generalizable Whole Slide Image Classification with Fine-Grained Visual-Semantic
Interaction
Authors: Hao Li, Ying Chen, Yifei Chen, Wenxian Yang, Bowen Ding, Yuchen Han, Liansheng Wang, Rongshan Yu

Abstract: Whole Slide Image (WSI) classification is often formulated as a Multiple Instance Learning (MIL) problem.

Recently, Vision-Language… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

Comments: Accepted by CVPR 2024

27. arXiv:2402.19299 [pdf, other]

RL-GPT: Integrating Reinforcement Learning and Code-as-policy
Authors: Shaoteng Liu, Haoqi Yuan, Minda Hu, Yanwei Li, Yukang Chen, Shu Liu, Zongqing Lu, Jiaya Jia

Abstract: Large Language Models (LLMs) have demonstrated proficiency in utilizing various tools by coding, yet

they face limitations in handling intricate logic and precise control. In embodied tasks, high-level planning is

amenable to direct coding, while low-level actions often necessitate task-specific refinement, such as Rei… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

28. arXiv:2402.19282 [pdf, other]

WanJuan-CC: A Safe and High-Quality Open-sourced English Webtext Dataset
Authors: Jiantao Qiu, Haijun Lv, Zhenjiang Jin, Rui Wang, Wenchang Ning, Jia Yu, ChaoBin Zhang, Pei Chu, Yuan Qu,

Runyu Peng, Zhiyuan Zeng, Huanze Tang, Ruiliang Xu, Wei Li, Hang Yan, Conghui He

Abstract: …and high-quality open-sourced English webtext dataset derived from Common Crawl data. The study

addresses the challenges of constructing large-scale pre-training datasets for language… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

29. arXiv:2402.19273 [pdf, other]

PlanGPT: Enhancing Urban Planning with Tailored Language Model and E!cient Retrieval
Authors: He Zhu, Wenjia Zhang, Nuoxian Huang, Boyang Li, Luyao Niu, Zipei Fan, Tianle Lun, Yicheng Tao, Junyou

Su, Zhaoya Gong, Chenyu Fang, Xing Liu

Abstract: In the field of urban planning, general-purpose large language… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

30. arXiv:2402.19267 [pdf, other]

Robust Guidance for Unsupervised Data Selection: Capturing Perplexing Named Entities
for Domain-Specific Machine Translation
Authors: Seunghyun Ji, Hagai Raja Sinulingga, Darongsae Kwon

Abstract: Employing extensive datasets enables the training of multilingual machine translation models; however,

these models often fail to accurately translate sentences within specialized domains. Although obtaining and

translating domain-specific data incurs high costs, it is inevitable for high-quality translations. Hence, f… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

Comments: Submitted to SIGUL 2024, a satellite workshop of LREC-COLING 2024

31. arXiv:2402.19255 [pdf, other]

GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as
Mathematical Problem Solvers
Authors: Qintong Li, Leyang Cui, Xueliang Zhao, Lingpeng Kong, Wei Bi

Abstract: Large language models (LLMs) have achieved impressive performance across various mathematical

reasoning benchmarks. However, there are increasing debates regarding whether these models truly understand

and apply mathematical knowledge or merely rely on shortcuts for mathematical… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

32. arXiv:2402.19248 [pdf, other]

Let LLMs Take on the Latest Challenges! A Chinese Dynamic Question Answering
Benchmark
Authors: Zhikun Xu, Yinghui Li, Ruixue Ding, Xinyu Wang, Boli Chen, Yong Jiang, Xiaodong Deng, Jianxin Ma, Hai-Tao

Zheng, Wenlian Lu, Pengjun Xie, Chang Zhou, Fei Huang

Abstract: How to better evaluate the capabilities of Large Language… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

Comments: Work in progress!

33. arXiv:2402.19218 [pdf, other]

Memory-Augmented Generative Adversarial Transformers
Authors: Stephan Raaijmakers, Roos Bakker, Anita Cremers, Roy de Kleijn, Tom Kouwenhoven, Tessa Verhoef

Abstract: Conversational AI systems that rely on Large Language… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

34. arXiv:2402.19204 [pdf, other]

PeLLE: Encoder-based language models for Brazilian Portuguese based on open data
Authors: Guilherme Lamartine de Mello, Marcelo Finger, and Felipe Serras, Miguel de Mello Carpi, Marcos Menon

Jose, Pedro Henrique Domingues, Paulo Cavalim

Abstract: In this paper we present PeLLE, a family of large language… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

Comments: 15 pages

ACM Class: I.2.7

35. arXiv:2402.19200 [pdf, other]

PRSA: Prompt Reverse Stealing Attacks against Large Language Models
Authors: Yong Yang, Xuhong Zhang, Yi Jiang, Xi Chen, Haoyu Wang, Shouling Ji, Zonghui Wang

Abstract: Prompt, recognized as crucial intellectual property, enables large language models (LLMs) to perform

specific tasks without the need of fine-tuning, underscoring their escalating importance. With the rise of prompt-

based services, such as prompt marketplaces and LLM applications, providers often display prompts' ca… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

36. arXiv:2402.19173 [pdf, other]

StarCoder 2 and The Stack v2: The Next Generation
Authors: Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao

Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes

Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian

Zhu, Terry Yue Zhuo , et al. (41 additional authors not shown)

Abstract: The BigCode project, an open-scientific collaboration focused on the responsible development of Large

Language… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

37. arXiv:2402.19170 [pdf, ps, other]

Improving Legal Judgement Prediction in Romanian with Long Text Encoders
Authors: Mihai Masala, Traian Rebedea, Horia Velicu

Abstract: In recent years,the entire field of Natural Language Processing (NLP) has enjoyed amazing novel results

achieving almost human-like performance on a variety of tasks. Legal NLP domain has also been part of this

process, as it has seen an impressive growth. However, general-purpose… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

38. arXiv:2402.19167 [pdf, other]

Teaching Large Language Models an Unseen Language on the Fly
Authors: Chen Zhang, Xiao Liu, Jiuheng Lin, Yansong Feng

Abstract: Existing large language… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

39. arXiv:2402.19166 [pdf, other]

Conversational Language Models for Human-in-the-Loop Multi-Robot Coordination
Authors: William Hunt, Toby Godfrey, Mohammad D. Soorati

Abstract: With the increasing prevalence and diversity of robots interacting in the real world, there is need for

flexible, on-the-fly planning and cooperation. Large Language Models are starting to be explored in a multimodal

setup for communication, coordination, and planning in robotics. Existing approaches generally use a si… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

40. arXiv:2402.19155 [pdf, other]

Beyond Language Models: Byte Models are Digital World Simulators
Authors: Shangda Wu, Xu Tan, Zili Wang, Rui Wang, Xiaobing Li, Maosong Sun

Abstract: …of the digital world, where all forms of information and operations are encoded and manipulated in

binary format. Inspired by the success of next token prediction in natural language processing, we introduce bGPT,

a… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

Comments: 19 pages, 5 figures, 5 tables

41. arXiv:2402.19150 [pdf, other]

Typographic Attacks in Large Multimodal Models Can be Alleviated by More Informative
Prompts
Authors: Hao Cheng, Erjia Xiao, Renjing Xu

Abstract: Large Multimodal Models (LMMs) rely on pre-trained Vision… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

42. arXiv:2402.19135 [pdf] doi 10.1145/3613904.3642805

Think Fast, Think Slow, Think Critical: Designing an Automated Propaganda Detection
Tool
Authors: Liudmila Zavolokina, Kilian Sprenkamp, Zoya Katashinskaya, Daniel Gordon Jones, Gerhard Schwabe

Abstract: …to nudge readers towards more critical news consumption by activating the analytical mode of thinking,

following Kahneman's dual-system theory of cognition. Using Large Language Models, ClarifAI detects propaganda

in news articles and provides context-rich explanations, enhancing users' understanding and critic… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

Comments: The paper is accepted for publication in proceedings of the CHI Conference on Human Factors in Computing Systems (2024)

43. arXiv:2402.19133 [pdf, other]

Evaluating Webcam-based Gaze Data as an Alternative for Human Rationale Annotations
Authors: Stephanie Brandl, Oliver Eberle, Tiago Ribeiro, Anders Søgaard, Nora Hollenstein

Abstract: …compare WebQAmGaze, a multilingual dataset for information-seeking QA, with attention and

explainability-based importance scores for 4 di!erent multilingual Transformer-based language… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

Comments: Accepted to LREC-COLING 2024

44. arXiv:2402.19119 [pdf, other]

VIXEN: Visual Text Comparison Network for Image Di"erence Captioning
Authors: Alexander Black, Jing Shi, Yifei Fai, Tu Bui, John Collomosse

Abstract: …order to highlight any content manipulation present. Our proposed network linearly maps image

features in a pairwise manner, constructing a soft prompt for a pretrained large language model. We address the

challenge of low volume of training data and lack of manipulation variety in existing image di!erence captioning…

▽ More

Submitted 29 February, 2024; originally announced February 2024.

Comments: AAAI 2024

45. arXiv:2402.19118 [pdf, other]

Continuous Sign Language Recognition Based on Motor attention mechanism and frame-
level Self-distillation
Authors: Qidan Zhu, Jing Li, Fei Yuan, Quan Gan

Abstract: Changes in facial expression, head movement, body movement and gesture movement are remarkable

cues in sign language recognition, and most of the current continuous sign… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

Comments: 10 pages, 7 figures

46. arXiv:2402.19116 [pdf, other]

How to Understand "Support"? An Implicit-enhanced Causal Inference Approach for
Weakly-supervised Phrase Grounding
Authors: Jiamin Luo, Jianing Zhao, Jingjing Wang, Guodong Zhou

Abstract: …pairs for training. However, existing studies on WPG largely ignore the implicit phrase-region matching

relations, which are crucial for evaluating the capability of models in understanding the deep multimodal

semantics. To this end, this paper proposes an Implicit-Enhanced Causal Inference (IECI) approach to address the

challenges of… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

47. arXiv:2402.19106 [pdf, other]

A SOUND APPROACH: Using Large Language Models to generate audio descriptions for
egocentric text-audio retrieval
Authors: Andreea-Maria Oncescu, João F. Henriques, Andrew Zisserman, Samuel Albanie, A. Sophia Koepke

Abstract: …for text-audio retrieval. To exploit relevant audio information from video-text datasets, we introduce a

methodology for generating audio-centric descriptions using Large Language Models (LLMs). In this work, we

consider the egocentric video setting and propose three new text-audio retrieval benchmarks based on the Epi…

▽ More

Submitted 29 February, 2024; originally announced February 2024.

Comments: 9 pages, 2 figures, 9 tables, Accepted at ICASSP 2024

48. arXiv:2402.19103 [pdf, other]

Whispers that Shake Foundations: Analyzing and Mitigating False Premise Hallucinations
in Large Language Models
Authors: Hongbang Yuan, Pengfei Cao, Zhuoran Jin, Yubo Chen, Daojian Zeng, Kang Liu, Jun Zhao

Abstract: Large Language… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

Comments: 12 pages, 5 figures, 5 tables

49. arXiv:2402.19097 [pdf, other]

TEncDM: Understanding the Properties of Di"usion Model in the Space of Language
Model Encodings
Authors: Alexander Shabalin, Viacheslav Meshchaninov, Tingir Badmaev, Dmitry Molchanov, Grigory Bartosh,

Sergey Markov, Dmitry Vetrov

Abstract: Drawing inspiration from the success of di!usion models in various domains, numerous research papers

proposed methods for adapting them to text data. Despite these e!orts, none of them has managed to achieve the

quality of the large… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

Comments: 14 pages, 8 figures, submitted to ACL 2024

ACM Class: I.2; I.7

50. arXiv:2402.19095 [pdf]

A Protein Structure Prediction Approach Leveraging Transformer and CNN Integration
Authors: Yanlin Zhou, Kai Tan, Xinyu Shen, Zheng He

Abstract: …Therefore, based on the advantages of deep learning-based methods in feature extraction and learning

ability, this paper adopts a two-dimensional fusion deep neural network model, DstruCCN, which uses

Convolutional Neural Networks (CCN) and a supervised Transformer protein… ▽ More

Submitted 29 February, 2024; originally announced February 2024.

Feedback?

language models All fields Search

 Show abstracts Hide abstracts

 results per page.50 Sort results by Announcement date (newest first) Go

Next1 2 3 4 5 …

cs.SE cs.AI cs.LG

cs.CV

cs.CL cs.AI

cs.RO cs.CV cs.LG

cs.CL cs.AI cs.CV

cs.CL cs.AI

cs.LG cs.AI cs.CL

cond-mat.mtrl-sci cs.CL physics.app-ph

cs.AI cs.CL

cs.LG cs.CL math.OC stat.ML

cs.LG cs.AI cs.CL

cs.SE cs.AI cs.CL

cs.LG cs.CL

cs.IR cs.AI econ.GN

cs.IR cs.CL cs.LG

cs.CL cs.AI

cs.CV cs.CL

cs.CY cs.AI cs.CL cs.LG

cs.CL cs.AI cs.IR

cs.CR cs.AI

cs.CR cs.AI cs.LG

cs.CL

cs.LG cs.AI

cs.CL

cs.CL cs.SD eess.AS

cs.CV

cs.AI cs.LG

cs.CL

cs.CL

cs.CL cs.AI

cs.CL

cs.CL

cs.CL

cs.CL

cs.CR cs.CL

cs.SE cs.AI

cs.CL cs.AI

cs.CL

cs.RO

cs.LG

cs.CV

cs.HC cs.AI

cs.CL

cs.CV cs.CL

cs.CV

cs.CL cs.AI

eess.AS cs.IR cs.SD

cs.CL cs.AI

cs.CL

q-bio.BM cs.LG

Next1 2 3 4 5 …

Support Privacy Terms of Use License

Visual Studio Code is a lightweight, powerful source code
editor available on Windows, macOS, Linux, and even your
browser. It comes with built-in support for JavaScript,
TypeScript and Node.js and has a rich ecosystem of
extensions for other languages and runtimes.

Code with extensions
Whether you're a beginner or an expert, we've got
you covered. Choose from hundreds of extensions
to power up your VS Code experience.

Learn more about extensions

Browse over 50,000 extensions in the Extension Marketplace

Any language

Choose from hundreds of extensions to
customize your VS Code experience for any
language you're working in.

View language extensions

Tools & services

Integrate your favorite tools and services
seamlessly into your coding workflow with
our extensions. From debugging,
deployment to data analysis.

View debugger extensions

Community-powered

Our extensions are community-powered,
which means you get the best tools and ideas
from developers just like you.

Learn about the extension community

Code smarter, with an
AI pair programmer
Write code faster and smarter with GitHub Copilot, your AI pair
programmer. The combination of a Chat assistant, in-editor
Chat, and inline completions let you leverage the power of
Copilot no matter what you’re working on.

Try GitHub Copilot free for 30 days

Inline Suggestions

Copilot presents suggestions automatically to help you code
more efficiently.

Learn about Inline Suggestions

Chat

Copilot enables an interactive Chat experience that understands
the context of your code, workspace, extensions, settings, and
more.

Learn about Chat

Copilot X

GitHub Copilot X is our vision for the future of AI-powered
software development, integrated into every part of your
workflow.

Learn about Copilot X

Code anywhere
Code wherever you're most productive, whether
you're connected to the cloud, a remote
repository, or in the browser with VS Code for the
Web (vscode.dev).

Learn about Remote Development

Built-in Source Control

VS Code has integrated source control
management (SCM) and includes Git support
out-of-the-box. Many other source control
providers are available through extensions.

Learn about Git in VS Code

GitHub Codespaces

Codespaces provides cloud-powered
development environments for any activity -
whether it's a long-term project, or a short-
term task like reviewing a pull request.

Learn about Codespaces

vscode.dev

VS Code for the Web (aka vscode.dev)
provides a free, zero-install Microsoft Visual
Studio Code experience running entirely in
your browser.

Learn about vscode.dev

Code fully customized
Customize your VS Code UI and layout so that it fits your coding
style.

Learn how to customize your editor

Themes

Color themes let you modify the colors in VS Code's user
interface to suit your preferences and work environment.

Learn about themes

Settings Sync

You can share your user settings across your VS Code instances
with the Settings Sync feature.

Learn about Settings Sync

Profiles

VS Code Profiles let you create sets of customizations and
quickly switch between them or share them with others.

Learn about profiles

Code with rich features
There's a lot more to an editor. Whether it's using built-in

features or rich extensions, there's something for everyone.

Integrated terminal
Use your favorite local terminal whether it's
zsh, pwsh, or git bash, all inside the editor.

Run code
Run and debug your code without leaving
your editor.

Version control
Built-in support for git and many other
source control providers.

Build tasks
Run tools and analyze their results from
within VS Code.

Local history
Never lose your local changes with
automatically tracked local history.

Themes
Your theme is an extension of your
personality. Add some flair to your editor
and add your touch.

Security
Browse through code files safely and
choose which folders you want to trust.

Accessibility
We optimize the experience for screen
readers, high contrast themes, and
keyboard-only navigation.

Web support
Whether you are on your phone, tablet, or
desktop, you can access your code from
anywhere.

Version 1.87 is now available! Read about the new features and fixes from February.

Free. Built on open source. Runs everywhere.

Smart, fast,
customizable

Download for macOS

Web, Insiders edition, or other platforms

By using VS Code, you agree to its

license and privacy statement.

Visual Studio Code Docs Updates Blog API Extensions FAQ Learn DownloadSearch Docs

File reports Code experiments Explore papers

Agent benchmarks without these challenges

10

• Simulation environment

• Synthetic text (if any)

Published as a conference paper at ICLR 2019

(a) GoToObj: "go to
the blue ball"

(b) PutNextLocal:
"put the blue key next
to the green ball"

(c) BossLevel: "pick up the grey box behind you, then go
to the grey key and open a door". Note that the green door
near the bottom left needs to be unlocked with a green key,
but this is not explicitly stated in the instruction.

Figure 1: Three BabyAI levels built using the MiniGrid environment. The red triangle represents
the agent, and the light-grey shaded area represents its field of view (partial observation).

rewards) would have to be given by a human, and are therefore rather expensive to get. Under this
assumption, imitation learning methods such as behavioral cloning, Searn (Daumé Iii et al., 2009),
DAGGER (Ross et al., 2011) or maximum-entropy RL (Ziebart et al., 2008) are more appealing, as
more learning can be achieved per human-input unit.

Similar to BabyAI, studying sample efficiency of deep learning methods was a goal of the bAbI
tasks (Weston et al., 2016), which tested reasoning capabilities of a learning agent. Our work differs
in both of the object of the study (grounded language with a simulated human in the loop) and in the
method: instead of generating a fixed-size dataset and measuring the performance, we measure how
much data a general-purpose model would require to get close-to-perfect performance.

There has been much research on instruction following with natural language (Tellex et al., 2011;
Chen and Mooney, 2011; Artzi and Zettlemoyer, 2013; Mei et al., 2016; Williams et al., 2018) as
well as several datasets including SAIL (Macmahon et al., 2006; Chen and Mooney, 2011) and
Room-to-Room (Anderson et al., 2018). Instead of using natural language, BabyAI utilises a syn-
thetic Baby language, in order to fully control the semantics of an instruction and easily generate as
much data as needed.

Finally, Wang et al. (2016) presented a system that interactively learned language from a human.
We note that their system relied on substantial amounts of prior knowledge about the task, most
importantly a task-specific executable formal language.

3 BABYAI PLATFORM

The BabyAI platform that we present in this work comprises an efficiently simulated gridworld
environment (MiniGrid) and a number of instruction-following tasks that we call levels, all formu-
lated using subsets of a synthetic language (Baby Language). The platform also includes a bot that
can generate successful demonstrations for all BabyAI levels. All the code is available online at
https://github.com/mila-iqia/babyai/tree/iclr19.

3

(a) House (b) Basic

Figure 7: The same generated game with two themed grammars: house and basic.

Room Descriptions The description of a room is the concatenation of the room-level description
of every object it contains, shown typically when entering the room or upon using the look

command. The room-level description of an object contains information the player should be
aware of upon entering the room (e.g., “There is a chest here. It is open and you
can see some gold coins in it.”). The room’s description also mentions its possible exits
(e.g., “There is a path leading north.”). It is updated dynamically based on changes to
the states of objects in the room, for example listing whether a container is open, closed, or locked,
and which objects it contains.

Quest Instructions We use instructions to explain to the player what to do in a game. An
instruction is a piece of text describing a particular action or several di�erent actions. For ex-
ample, “Retrieve the blue key” could be used to represent the action take blue key,
whereas “Take the red key from the locked chest” may represent the sequence of ac-
tions unlock chest / open chest / take red key. In TextWorld, instructions may optionally
describe every action of a quest (easier), only the final action (harder), or they may force the
player to figure out what to do from scratch (goal identification; hardest). Likewise, the ability
to combine actions into a single instruction can also be toggled; identifying a sequence of actions
from an instruction rather than a single action is an additional challenge.

Text Generation Options TextWorld o�ers some control over di�erent aspects of the text
generation. Objects with similar attributes/states can be grouped together when describing a
room (e.g., “In here, you see two red containers: a box and a chest.”). Ob-
jects mentioned in an instruction can be referred to using one or several of their attributes
(e.g., “Take the red edible thing.”). Use of coreference (e.g., “There is a chest.
It is open. In it, you see nothing interesting.”) is also optional.

TextWorld also o�ers the choice between two themed grammars: house and basic. The house
theme describes the world as if the game takes place in a modern house. The second theme uses a
simple grammar with almost no linguistic variation (e.g., no adjectives, no multi-word names). In
this case, objects with the same attributes use a shared, prototypical prefix for their names followed
by a number (e.g., stand42). The basic grammar cuts down the vocabulary and the language
complexity to ease the training of neural generative models. These house and basic themes can be
seen applied to the same underlying game in Figure 7.

13

World of Bits: An Open-Domain Platform for Web-Based Agents

Figure 3. 7 of the 100 MiniWoB web tasks, ranging from simple (left) to more complex (right).

ment learning environments called Mini World of Bits
(MiniWoB) that share many of the characteristics of live
web tasks (interacting with buttons, text fields, sliders, date
pickers, etc.) and allows us to study these challenges in a
controlled context. Since the web offers powerful visual
design tools, the average MiniWoB environment is only
112 lines of HTML/CSS/JavaScript. Each MiniWoB envi-
ronment is an HTML page that is 210 pixels high, 160 pix-
els wide (i.e. identical to the ATARI environment dimen-
sions) — the top 50 pixels (in yellow background) contain
the natural language task description (randomly generated)
and the 160 ⇥ 160 area below is for interactions. The re-
wards range from �1.0 (failure) to 1.0 (success) and are
weighted linearly with time to encourage fast completion
time. See Figure 7 for examples.

2.3. Live Web Tasks: FormWoB

While it is possible to create web tasks from scratch (e.g.
MiniWoB), the Internet already offers a massive repository
of websites. In this section we describe an approach that
allows us to convert these websites into web tasks.

Since websites change over time and since we do not wish
to spam websites with requests while the agent is train-
ing, we need to create an offline approximation that the
agent can interact with. To do this, when we collect hu-
man demonstrations, we use a proxy to record all HTTP
requests and responses between the agent and the website.
To train and evaluate agents on a web task, we use the proxy
to handle all requests with the recorded responses.

We also use requests to define reward functions. Form-
filling tasks involve making a final request to the website
with a set of key-value pairs (e.g., {from: DEN, to: JFK}).
We define the reward function as the fraction of key-value
pairs that match those in human demonstrations.2

When an agent performs an action that generates a request
never seen during human demonstrations (i.e., a cache
miss), we immediately end the episode with zero reward.
This provides a lower bound on the true reward if the agent

2Ideally, we would require exact match, but this resulted in too
sparse of a reward signal to train and evaluate with.

Figure 4. Our crowdsourcing interface for collecting human
demonstrations on the web. The left side streams visual obser-
vations using VNC and the right side displays queries. All ob-
servations and actions are recorded. At the end of episode, the
worker marks a DOM element as the answer (green box).

were to interact with the real website (assuming all rewards
are non-negative), since all action sequences that result in
a cache miss receive the minimum possible reward.

FormWoB benchmark. We applied this approach to four
flight booking websites (United, Alaska, AA, and JetBlue).
On each website, an agent must fill out a form and click
on the submit button. The form filling process requires a
diverse set of interaction skills, such as typing cities in a
text box using autocomplete, using a date picker, etc. For
each website, there is a query template parameterized by
the following fields: an origin airport, a destination airport,
a departure date, and a return date. Airport names are sam-
pled from 11 major US cities, and dates are sampled from
March 2017. We created 100 different instantiations for
each query template, and collected on average 1 episode of
human demonstration for every query.

2.4. Crowdsourcing Web Tasks at Scale: QAWoB

To take full advantage of the scale and diversity of the web,
we now present a more scalable approach to generating
web tasks that does not involve specifying the reward func-
tions manually for each web task. The key is cast web tasks
as question answering, and solicit questions from crowd-

MiniWoB
(Shi et al., 2017)

TextWorld
(Côté et al., 2019)

BabyAI
(Chevalier-Boisvert et al., 2019)

• Small action space

• Short-horizon tasks

11

WebGPT (Nakano et al., 2021)

Research API ChatGPT Company

OpenAI © 2015 – 2024

December 16, 2021 , , ,

References

Authors

Acknowledgments Thanks to our paper co-authors: Jeff Wu, Long Ouyang, Christina Kim,
Christopher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Roger
Jiang, Karl Cobbe, Tyna Eloundou, Gretchen Krueger, Kevin Button, Matthew
Knight and Benjamin Chess.

Thanks to those who helped with and provided feedback on this release: Steven
Adler, Sam Altman, Beth Barnes, Miles Brundage, Kevin Button, Steve Dowling,
Alper Ercetin, Matthew Knight, Gretchen Krueger, Ryan Lowe, Andrew Mayne, Bob
McGrew, Mira Murati, Richard Ngo, Jared Salzano, Natalie Summers and
Hannah Wong.

Thanks to the team at Surge AI for helping us with data collection, and to all of our
contractors for providing demonstrations and comparisons, without which this
project would not have been possible.

Related research

We’ve fine-tuned GPT-3 to more accurately answer open-ended questions using a text-
based web browser.

WebGPT: Improving the factual accuracy
of language models through web browsing

O. Evans, O. Cotton-Barratt, L. Finnveden, A. Bales, A. Balwit, P. Wills, L.
Righetti, and W. Saunders. Truthful AI: Developing and governing AI that
does not lie. arXiv preprint , 2021.

1

J. Maynez, S. Narayan, B. Bohnet, and R. McDonald. On faithfulness and
factuality in abstractive summarization. arXiv preprint
, 2020.

2

K. Shuster, S. Poff, M. Chen, D. Kiela, and J. Weston. Retrieval
augmentation reduces hallucination in conversation. arXiv preprint

, 2021.

3

S. Lin, J. Hilton, and O. Evans. TruthfulQA: Measuring how models mimic
human falsehoods. arXiv preprint , 2021.

4

D. Metzler, Y. Tay, D. Bahri, and M. Najork. Rethinking search: Making
experts out of dilettantes. arXiv preprint , 2021.

5

Language models can explain neurons in
language models
May 9, 2023

GPT-4
Mar 14, 2023

Forecasting potential misuses of language
models for disinformation campaigns and how
to reduce risk
Jan 11, 2023

Scaling laws for reward model overoptimization
Oct 19, 2022

Back to top

Research

Read paper

Browse samples

Language Human feedback GPT-3 Publication

arXiv:2110.06674 ↩︎↩︎

arXiv:2005.0066
1 ↩︎

arXi
v:2104.07567 ↩︎

arXiv:2109.07958 ↩︎

arXiv:2105.02274 ↩︎

Jacob Hilton

Reiichiro Nakano

Suchir Balaji

John Schulman

View all research

Overview
Index
GPT-4
DALL·E 3
Sora

Overview
Pricing
Docs

Overview
Team
Enterprise
Pricing
Try ChatGPT

About
Blog
Careers
Charter
Security
Customer stories
Safety

Terms & policies
Privacy policy
Brand guidelines

Twitter YouTube GitHub SoundCloud LinkedIn

We’ve fine-tuned GPT-3 to more accurately answer open-ended questions using a text-
based web browser. Our prototype copies how humans research answers to questions
online—it submits search queries, follows links, and scrolls up and down web pages. It is
trained to cite its sources, which makes it easier to give feedback to improve factual
accuracy. We’re excited about developing more truthful AI, but challenges remain, such
as coping with unfamiliar types of questions.

Language models like GPT-3 are useful for many different tasks, but have a tendency to
“hallucinate” information when performing tasks requiring obscure real-world
knowledge. To address this, we taught GPT-3 to use a text-based web-browser. The
model is provided with an open-ended question and a summary of the browser state, and
must issue commands such as “Search ...”, “Find in page: ...” or “Quote: …”. In this way, the
model collects passages from web pages, and then uses these to compose an answer.

The model is fine-tuned from GPT-3 using we’ve used
previously. We begin by training the model to copy human demonstrations, which gives it
the ability to use the text-based browser to answer questions. Then we improve the
helpfulness and accuracy of the model’s answers, by training a reward model to predict
human preferences, and optimizing against it using either reinforcement learning or
rejection sampling.

,

1

2 3

the same general methods

The model can find
helpful answers to
questions on the web.

How do neural networks work?

In its most basic form, a neural network has two layers: an input layer
and an output layer . The output layer is the component of the neural
network that makes predictions . In a feedforward network, information
flows through the network in the following way: patterns of information
are fed into the network via the input units, which trigger the layers of
hidden units, and these in turn arrive at the output units . The network
learns by a feedback process called backpropagation, which involves
comparing the output a network produces with the output it was meant
to produce, and using the difference between them to modify the weights
of the connections between the units in the network, working from the
output units through the hidden units to the input units, going
backward . Over time, backpropagation causes the network to learn,
reducing the difference between actual and intended output to the point
where the two exactly coincide, so the network figures things out exactly
as it should .

1. How neural networks work - A simple introduction (www.explainthatstuff.com)
2. How neural networks work - A simple introduction (www.explainthatstuff.com)
3. How Do Neural Networks Really Work? | Nick McCullum (nickmccullum.com)
4. How Do Neural Networks Really Work? | Nick McCullum (nickmccullum.com)

[3]

[3]

[1]

[2][4]

[2]

input and the output. A richer structure like this is called a
deep neural network (DNN), and it's typically used for
tackling much more complex problems. In theory, a DNN
can map any kind of input to any kind of output, but the
drawback is that it needs considerably more training: it
need to "see" millions or billions of examples compared to
perhaps the hundreds or thousands that a simpler network
might need. Deep or "shallow," however it's structured and
however we choose to illustrate it on the page, it's worth
reminding ourselves, once again, that a neural network is
not actually a brain or anything brain like. Ultimately, it's a
bunch of clever math... a load of equations... an algorithm, if
you prefer. [4]

How does a neural network learn
things?
Information flows through a neural network in two ways.
When it's learning (being trained) or operating normally (after
being trained), patterns of information are fed into the
network via the input units, which trigger the layers of
hidden units, and these in turn arrive at the output units.
This common design is called a feedforward network. Not
all units "fire" all the time. Each unit receives inputs from the
units to its left, and the inputs are multiplied by the weights
of the connections they travel along. Every unit adds up all
the inputs it receives in this way and (in the simplest type of
network) if the sum is more than a certain threshold value,
the unit "fires" and triggers the units it's connected to (those
on its right).

[Image: A man launches a red ball down a ten-pin bowling
alley toward skittles.]

Photo: Bowling: You learn how to do skillful things like this
with the help of the neural network inside your brain. Every
time you throw the ball wrong, you learn what corrections
you need to make next time. Photo by Kenneth R.
Hendrix/US Navy published on Flickr.

www.explainthatstuff.com

ELI5 results

Our system is trained to answer questions from ELI5, a dataset of open-ended questions
scraped from the “Explain Like I’m Five” subreddit. We trained three different models,
corresponding to three different inference-time compute budgets. Our best-performing
model produces answers that are preferred 56% of the time to answers written by our
human demonstrators, with a similar level of factual accuracy. Even though these were the
same kind of demonstrations used to train the model, we were able to outperform them
by using human feedback to improve the model’s answers.

4

Results of human evaluations on the ELI5 test set, comparing our model with human demonstrators. The amount of rejection
sampling (the n in best-of-n) was chosen to be compute-efficient. Error bars show ±1 standard error.

TruthfulQA results

For questions taken from the training distribution, our best model’s answers are about as
factually accurate as those written by our human demonstrators, on average. However,
out-of-distribution robustness is a challenge. To probe this, we evaluated our models on
TruthfulQA, an adversarially-constructed dataset of short-form questions designed to
test whether models fall prey to things like common misconceptions. Answers are scored
on both truthfulness and informativeness, which trade off against one another (for
example, “I have no comment” is considered truthful but not informative).

Our models outperform GPT-3 on TruthfulQA and exhibit more favourable scaling
properties. However, our models lag behind human performance, partly because they
sometimes quote from unreliable sources (as shown in the question about ghosts).
We hope to reduce the frequency of these failures using techniques like
adversarial training.

4

above

TruthfulQA results. For GPT-3, we used the prompts and automated metric from the TruthfulQA paper. For the web-browsing
model, we truncated the long-form answers and used human evaluation, since the answers are out-of-distribution for the
automated metric. Error bars show ±1 standard error.

Evaluating factual accuracy

In order to provide feedback to improve factual accuracy, humans must be able to evaluate
the factual accuracy of claims produced by models. This can be extremely challenging,
since claims can be technical, subjective or vague. For this reason, we require the model to
cite its sources. This allows humans to evaluate factual accuracy by checking whether a
claim is supported by a reliable source. As well as making the task more manageable, it also
makes it less ambiguous, which is important for reducing label noise.

However, this approach raises a number of questions. What makes a source reliable?
What claims are obvious enough to not require support? What trade-off should be made
between evaluations of factual accuracy and other criteria such as coherence? All of these
were difficult judgment calls. We do not think that our model picked up on much of this
nuance, since it still makes basic errors. But we expect these kinds of decisions to become
more important as AI systems improve, and cross-disciplinary research is needed to
develop criteria that are both practical and epistemically sound. We also expect further
considerations such as transparency to be important.

Eventually, having models cite their sources will not be enough to evaluate factual
accuracy. A sufficiently capable model would cherry-pick sources it expects humans to
find convincing, even if they do not reflect a fair assessment of the evidence. There are
already signs of this happening (see the questions about boats). We hope to
mitigate this using methods like .

5

1

above
debate

Risks of deployment and training

Although our model is generally more truthful than GPT-3 (in that it generates false
statements less frequently), it still poses risks. Answers with citations are often perceived
as having an air of authority, which can obscure the fact that our model still makes basic
errors. The model also tends to reinforce the existing beliefs of users. We are researching
how best to address these and other concerns.

In addition to these deployment risks, our approach introduces new risks at train time by
giving the model access to the web. Our browsing environment does not allow full web
access, but allows the model to send queries to the and
follow links that already exist on the web, which can have side-effects. From our
experience with GPT-3, the model does not appear to be anywhere near capable enough
to dangerously exploit these side-effects. However, these risks increase with model
capability, and we are working on establishing internal safeguards against them.

Microsoft Bing Web Search API

Conclusion

Human feedback and tools such as web browsers offer a promising path towards robustly
truthful, general-purpose AI systems. Our current system struggles with challenging or
unfamiliar circumstances, but still represents significant progress in this direction.

If you’d like to help us build more helpful and truthful AI systems, !we’re hiring

Research API ChatGPT Safety Company Search Log in Try ChatGPT

Task input

Web browser

Research API ChatGPT Company

OpenAI © 2015 – 2024

December 16, 2021 , , ,

References

Authors

Acknowledgments Thanks to our paper co-authors: Jeff Wu, Long Ouyang, Christina Kim,
Christopher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Roger
Jiang, Karl Cobbe, Tyna Eloundou, Gretchen Krueger, Kevin Button, Matthew
Knight and Benjamin Chess.

Thanks to those who helped with and provided feedback on this release: Steven
Adler, Sam Altman, Beth Barnes, Miles Brundage, Kevin Button, Steve Dowling,
Alper Ercetin, Matthew Knight, Gretchen Krueger, Ryan Lowe, Andrew Mayne, Bob
McGrew, Mira Murati, Richard Ngo, Jared Salzano, Natalie Summers and
Hannah Wong.

Thanks to the team at Surge AI for helping us with data collection, and to all of our
contractors for providing demonstrations and comparisons, without which this
project would not have been possible.

Related research

We’ve fine-tuned GPT-3 to more accurately answer open-ended questions using a text-
based web browser.

WebGPT: Improving the factual accuracy
of language models through web browsing

O. Evans, O. Cotton-Barratt, L. Finnveden, A. Bales, A. Balwit, P. Wills, L.
Righetti, and W. Saunders. Truthful AI: Developing and governing AI that
does not lie. arXiv preprint , 2021.

1

J. Maynez, S. Narayan, B. Bohnet, and R. McDonald. On faithfulness and
factuality in abstractive summarization. arXiv preprint
, 2020.

2

K. Shuster, S. Poff, M. Chen, D. Kiela, and J. Weston. Retrieval
augmentation reduces hallucination in conversation. arXiv preprint

, 2021.

3

S. Lin, J. Hilton, and O. Evans. TruthfulQA: Measuring how models mimic
human falsehoods. arXiv preprint , 2021.

4

D. Metzler, Y. Tay, D. Bahri, and M. Najork. Rethinking search: Making
experts out of dilettantes. arXiv preprint , 2021.

5

Language models can explain neurons in
language models
May 9, 2023

GPT-4
Mar 14, 2023

Forecasting potential misuses of language
models for disinformation campaigns and how
to reduce risk
Jan 11, 2023

Scaling laws for reward model overoptimization
Oct 19, 2022

Back to top

Research

Read paper

Browse samples

Language Human feedback GPT-3 Publication

arXiv:2110.06674 ↩︎↩︎

arXiv:2005.0066
1 ↩︎

arXi
v:2104.07567 ↩︎

arXiv:2109.07958 ↩︎

arXiv:2105.02274 ↩︎

Jacob Hilton

Reiichiro Nakano

Suchir Balaji

John Schulman

View all research

Overview
Index
GPT-4
DALL·E 3
Sora

Overview
Pricing
Docs

Overview
Team
Enterprise
Pricing
Try ChatGPT

About
Blog
Careers
Charter
Security
Customer stories
Safety

Terms & policies
Privacy policy
Brand guidelines

Twitter YouTube GitHub SoundCloud LinkedIn

We’ve fine-tuned GPT-3 to more accurately answer open-ended questions using a text-
based web browser. Our prototype copies how humans research answers to questions
online—it submits search queries, follows links, and scrolls up and down web pages. It is
trained to cite its sources, which makes it easier to give feedback to improve factual
accuracy. We’re excited about developing more truthful AI, but challenges remain, such
as coping with unfamiliar types of questions.

Language models like GPT-3 are useful for many different tasks, but have a tendency to
“hallucinate” information when performing tasks requiring obscure real-world
knowledge. To address this, we taught GPT-3 to use a text-based web-browser. The
model is provided with an open-ended question and a summary of the browser state, and
must issue commands such as “Search ...”, “Find in page: ...” or “Quote: …”. In this way, the
model collects passages from web pages, and then uses these to compose an answer.

The model is fine-tuned from GPT-3 using we’ve used
previously. We begin by training the model to copy human demonstrations, which gives it
the ability to use the text-based browser to answer questions. Then we improve the
helpfulness and accuracy of the model’s answers, by training a reward model to predict
human preferences, and optimizing against it using either reinforcement learning or
rejection sampling.

,

1

2 3

the same general methods

The model can find
helpful answers to
questions on the web.

How do neural networks work?

In its most basic form, a neural network has two layers: an input layer
and an output layer . The output layer is the component of the neural
network that makes predictions . In a feedforward network, information
flows through the network in the following way: patterns of information
are fed into the network via the input units, which trigger the layers of
hidden units, and these in turn arrive at the output units . The network
learns by a feedback process called backpropagation, which involves
comparing the output a network produces with the output it was meant
to produce, and using the difference between them to modify the weights
of the connections between the units in the network, working from the
output units through the hidden units to the input units, going
backward . Over time, backpropagation causes the network to learn,
reducing the difference between actual and intended output to the point
where the two exactly coincide, so the network figures things out exactly
as it should .

1. How neural networks work - A simple introduction (www.explainthatstuff.com)
2. How neural networks work - A simple introduction (www.explainthatstuff.com)
3. How Do Neural Networks Really Work? | Nick McCullum (nickmccullum.com)
4. How Do Neural Networks Really Work? | Nick McCullum (nickmccullum.com)

[3]

[3]

[1]

[2][4]

[2]

input and the output. A richer structure like this is called a
deep neural network (DNN), and it's typically used for
tackling much more complex problems. In theory, a DNN
can map any kind of input to any kind of output, but the
drawback is that it needs considerably more training: it
need to "see" millions or billions of examples compared to
perhaps the hundreds or thousands that a simpler network
might need. Deep or "shallow," however it's structured and
however we choose to illustrate it on the page, it's worth
reminding ourselves, once again, that a neural network is
not actually a brain or anything brain like. Ultimately, it's a
bunch of clever math... a load of equations... an algorithm, if
you prefer. [4]

How does a neural network learn
things?
Information flows through a neural network in two ways.
When it's learning (being trained) or operating normally (after
being trained), patterns of information are fed into the
network via the input units, which trigger the layers of
hidden units, and these in turn arrive at the output units.
This common design is called a feedforward network. Not
all units "fire" all the time. Each unit receives inputs from the
units to its left, and the inputs are multiplied by the weights
of the connections they travel along. Every unit adds up all
the inputs it receives in this way and (in the simplest type of
network) if the sum is more than a certain threshold value,
the unit "fires" and triggers the units it's connected to (those
on its right).

[Image: A man launches a red ball down a ten-pin bowling
alley toward skittles.]

Photo: Bowling: You learn how to do skillful things like this
with the help of the neural network inside your brain. Every
time you throw the ball wrong, you learn what corrections
you need to make next time. Photo by Kenneth R.
Hendrix/US Navy published on Flickr.

www.explainthatstuff.com

ELI5 results

Our system is trained to answer questions from ELI5, a dataset of open-ended questions
scraped from the “Explain Like I’m Five” subreddit. We trained three different models,
corresponding to three different inference-time compute budgets. Our best-performing
model produces answers that are preferred 56% of the time to answers written by our
human demonstrators, with a similar level of factual accuracy. Even though these were the
same kind of demonstrations used to train the model, we were able to outperform them
by using human feedback to improve the model’s answers.

4

Results of human evaluations on the ELI5 test set, comparing our model with human demonstrators. The amount of rejection
sampling (the n in best-of-n) was chosen to be compute-efficient. Error bars show ±1 standard error.

TruthfulQA results

For questions taken from the training distribution, our best model’s answers are about as
factually accurate as those written by our human demonstrators, on average. However,
out-of-distribution robustness is a challenge. To probe this, we evaluated our models on
TruthfulQA, an adversarially-constructed dataset of short-form questions designed to
test whether models fall prey to things like common misconceptions. Answers are scored
on both truthfulness and informativeness, which trade off against one another (for
example, “I have no comment” is considered truthful but not informative).

Our models outperform GPT-3 on TruthfulQA and exhibit more favourable scaling
properties. However, our models lag behind human performance, partly because they
sometimes quote from unreliable sources (as shown in the question about ghosts).
We hope to reduce the frequency of these failures using techniques like
adversarial training.

4

above

TruthfulQA results. For GPT-3, we used the prompts and automated metric from the TruthfulQA paper. For the web-browsing
model, we truncated the long-form answers and used human evaluation, since the answers are out-of-distribution for the
automated metric. Error bars show ±1 standard error.

Evaluating factual accuracy

In order to provide feedback to improve factual accuracy, humans must be able to evaluate
the factual accuracy of claims produced by models. This can be extremely challenging,
since claims can be technical, subjective or vague. For this reason, we require the model to
cite its sources. This allows humans to evaluate factual accuracy by checking whether a
claim is supported by a reliable source. As well as making the task more manageable, it also
makes it less ambiguous, which is important for reducing label noise.

However, this approach raises a number of questions. What makes a source reliable?
What claims are obvious enough to not require support? What trade-off should be made
between evaluations of factual accuracy and other criteria such as coherence? All of these
were difficult judgment calls. We do not think that our model picked up on much of this
nuance, since it still makes basic errors. But we expect these kinds of decisions to become
more important as AI systems improve, and cross-disciplinary research is needed to
develop criteria that are both practical and epistemically sound. We also expect further
considerations such as transparency to be important.

Eventually, having models cite their sources will not be enough to evaluate factual
accuracy. A sufficiently capable model would cherry-pick sources it expects humans to
find convincing, even if they do not reflect a fair assessment of the evidence. There are
already signs of this happening (see the questions about boats). We hope to
mitigate this using methods like .

5

1

above
debate

Risks of deployment and training

Although our model is generally more truthful than GPT-3 (in that it generates false
statements less frequently), it still poses risks. Answers with citations are often perceived
as having an air of authority, which can obscure the fact that our model still makes basic
errors. The model also tends to reinforce the existing beliefs of users. We are researching
how best to address these and other concerns.

In addition to these deployment risks, our approach introduces new risks at train time by
giving the model access to the web. Our browsing environment does not allow full web
access, but allows the model to send queries to the and
follow links that already exist on the web, which can have side-effects. From our
experience with GPT-3, the model does not appear to be anywhere near capable enough
to dangerously exploit these side-effects. However, these risks increase with model
capability, and we are working on establishing internal safeguards against them.

Microsoft Bing Web Search API

Conclusion

Human feedback and tools such as web browsers offer a promising path towards robustly
truthful, general-purpose AI systems. Our current system struggles with challenging or
unfamiliar circumstances, but still represents significant progress in this direction.

If you’d like to help us build more helpful and truthful AI systems, !we’re hiring

Research API ChatGPT Safety Company Search Log in Try ChatGPT

Task output

Reward via professional annotators

An agent, not a benchmark!

Desired benchmark

• Large complex environment

• Automatic reward function

• Research challenges

WebShop
• Large-scale complex environment based on 1.16M Amazon products

• Automatic reward based on instruction and product attribute matching

• Challenges language and visual understanding, and decision making

WebShop is challenging

13

Su
cc

es
s

Ra
te

0

15

30

45

60

Best RL agent Human Expert

59.6

28.7

Getting all attributes requires long-horizon exploration!

Trajectory length: 4.5 11.3

• Pre-trained image
model (ResNet)

• Pre-trained language
models (BERT, BART)

• Imitation learning

• Reinforcement learning

WebShop enables sim-to-real transfer

14

Chrome-based
 EnvironmentPix2Act Agent

Image Encoder

Text Decoder

Render Screenshot

Perform Action

click X Y begin_drag X Y end_drag X Y key [M] K scroll ZPossible Actions

Example Observations

Figure 1: Our agent learns to follow instructions via Graphical User Interfaces (GUIs). Unlike most prior
work studying instruction following for GUI-based tasks, our agent does not rely on text-based observations
corresponding to DOM trees or HTML source code, or task-specific actions. Instead, our agent receives pixel-
based observations and generates outputs corresponding to mouse and keyboard actions. The possible actions are
encoded as text and shown on the top of the figure. We show examples of observations from various episodes for
two benchmarks, MiniWob++ (top row) and WebShop (bottom row), that we adapt to study within the context of
our general Chrome-based environment framework. See details in §2.

complete tasks for users while relying solely on pixel-level visual representations of the GUI state,

and generic low-level actions?

Learning based on pixel-only inputs proved effective for game playing environments such as Atari
(Mnih et al., 2015). However, for GUI-based instruction following tasks, learning from pixel-only
inputs coupled with general low-level actions leads to several challenges. Interpreting GUIs visually
requires understanding the interface layout, recognizing and interpreting visually-situated natural
language, identifying visual elements, and predicting their functions and methods of interaction.
A generic action space also poses the challenge of a more complex mapping between high-level
textual instructions and corresponding sequences of low-level actions. As an example of the increased
difficulty in this setting, on the MiniWob++ benchmark (Shi et al., 2017; Liu et al., 2018) of web GUI
interaction, CC-Net (Humphreys et al., 2022) demonstrates human-level accuracy when accessing
both screenshots and DOM structure, but its performance drops by 75% when the DOM information
is removed from the agent’s observations.

Here we present PIX2ACT, a model that relies solely on pixel-based screenshots as input and selects
actions corresponding to basic mouse and keyboard functionalities.2 We build on PIX2STRUCT (Lee
et al., 2023), a Transformer-based (Vaswani et al., 2017) image-to-text model pre-trained to map

2Code and models are available at https://github.com/google-deepmind/pix2act.

2

Chrome-based
 EnvironmentPix2Act Agent

Image Encoder

Text Decoder

Render Screenshot

Perform Action

click X Y begin_drag X Y end_drag X Y key [M] K scroll ZPossible Actions

Example Observations

Figure 1: Our agent learns to follow instructions via Graphical User Interfaces (GUIs). Unlike most prior
work studying instruction following for GUI-based tasks, our agent does not rely on text-based observations
corresponding to DOM trees or HTML source code, or task-specific actions. Instead, our agent receives pixel-
based observations and generates outputs corresponding to mouse and keyboard actions. The possible actions are
encoded as text and shown on the top of the figure. We show examples of observations from various episodes for
two benchmarks, MiniWob++ (top row) and WebShop (bottom row), that we adapt to study within the context of
our general Chrome-based environment framework. See details in §2.

complete tasks for users while relying solely on pixel-level visual representations of the GUI state,

and generic low-level actions?

Learning based on pixel-only inputs proved effective for game playing environments such as Atari
(Mnih et al., 2015). However, for GUI-based instruction following tasks, learning from pixel-only
inputs coupled with general low-level actions leads to several challenges. Interpreting GUIs visually
requires understanding the interface layout, recognizing and interpreting visually-situated natural
language, identifying visual elements, and predicting their functions and methods of interaction.
A generic action space also poses the challenge of a more complex mapping between high-level
textual instructions and corresponding sequences of low-level actions. As an example of the increased
difficulty in this setting, on the MiniWob++ benchmark (Shi et al., 2017; Liu et al., 2018) of web GUI
interaction, CC-Net (Humphreys et al., 2022) demonstrates human-level accuracy when accessing
both screenshots and DOM structure, but its performance drops by 75% when the DOM information
is removed from the agent’s observations.

Here we present PIX2ACT, a model that relies solely on pixel-based screenshots as input and selects
actions corresponding to basic mouse and keyboard functionalities.2 We build on PIX2STRUCT (Lee
et al., 2023), a Transformer-based (Vaswani et al., 2017) image-to-text model pre-trained to map

2Code and models are available at https://github.com/google-deepmind/pix2act.

2

Pix2Act (Shaw et al., 2023) WebAgent (Gur et al., 2023) Ash (Sridhar et al., 2023)

SeeAct (Zheng et al., 2024)

Under review

Agent

Action

Feedback

Tell me how much I spent on
food purchase in March 2023

“
”

“
”

Create a ‘NolanFans' repo,
listing Nolan's Oscar-winning
films in a README file

check_repo
check_readme
check_answer

Functional
Success

Functional
Failure

Reddit wordmark
Whenever possible, Reddit’s icon and
wordmark should appear together.

Reddit’s wordmark is a refined
variation on its classic logo. The
rounded letters and shorter “i” reflect
the brand’s friendly, whimsical nature.
The dot on the “i” is Orangered
(FF4500, PMS 172 C) and oversized,
recalling Snoo’s eyes.

The wordmark should be aligned with
the Snoo in the horizontal lockup, and
the safe area determines relative
placement in both configurations.

REDDIT LOGO

Version 09-2020 04

Self-hosted fully functional web applications

CMS

Toolbox Knowledge resources

WebArena

Figure 1: WebArena is a standalone, self-hostable web environment for building autonomous agents.
WebArena creates websites from four popular categories with functionality and data mimicking
their real-world equivalents. To emulate human problem-solving, WebArena also embeds tools and
knowledge resources as independent websites. WebArena introduces a benchmark on interpreting
high-level realistic natural language command to concrete web-based interactions. We provide
annotated programs designed to programmatically validate the functional correctness of each task.

action sequences with reference action sequences, disregarding the functional correctness of the
executions and possible alternative solutions (Puig et al., 2018; Jernite et al., 2019; Xu et al., 2021; Li
et al., 2020; Deng et al., 2023). These limitations often result in a discrepancy between simulated
environments and the real world, and can potentially impact the generalizability of AI agents to
successfully understand, adapt, and operate within complex real-world situations.

We introduce WebArena, a realistic and reproducible web environment designed to facilitate the
development of autonomous agents capable of executing tasks (§2). An overview of WebArena
is in Figure 1. Our environment comprises four fully operational, self-hosted web applications,
each representing a distinct domain prevalent on the internet: online shopping, discussion forums,
collaborative development, and business content management. Furthermore, WebArena incorporates
several utility tools, such as map, calculator, and scratchpad, to best support possible human-like task
executions. Lastly, WebArena is complemented by an extensive collection of documentation and
knowledge bases that vary from general resources like English Wikipedia to more domain-specific
references, such as manuals for using the integrated development tool (Fan et al., 2022). The content
populating these websites is extracted from their real-world counterparts, preserving the authenticity
of the content served on each platform. We deliver the hosting services using Docker containers with
gym-APIs (Brockman et al., 2016), ensuring both the usability and the reproducibility of WebArena.

Along with WebArena, we release a ready-to-use benchmark with 812 long-horizon web-based
tasks (§3). Each task is described as a high-level natural language intent, emulating the abstract
language usage patterns typically employed by humans (Bisk et al., 2019). Two example intents
are shown in the upper left of Figure 1. We focus on evaluating the functional correctness of these
tasks, i.e., does the result of the execution actually achieve the desired goal (§3.2). For instance,
to evaluate the example in Figure 2, our evaluation method verifies the concrete contents in the
designated repository. This evaluation is not only more reliable (Zhong et al., 2017; Chen et al., 2021;
Wang et al., 2022) than comparing the textual surface-form action sequences (Puig et al., 2018; Deng
et al., 2023) but also accommodate a range of potential valid paths to achieve the same goal, which is
a ubiquitous phenomenon in sufficiently complex tasks.

We use this benchmark to evaluate several agents that can follow NL command and perform web-
based tasks (§4). These agents are implemented in a few-shot in-context learning fashion with
powerful large language models (LLMs) such as GPT-4 and PALM-2. Experiment results show that
the best GPT-4 agent performance is somewhat limited, with an end-to-end task success rate of only
14.41%, while the human performance is 78.24%. We hypothesize that the limited performance of
current LLMs stems from a lack of crucial capabilities such as active exploration and failure recovery
to successfully perform complex tasks (§5.2). These outcomes underscore the necessity for further
development towards robust and effective agents (LeCun, 2022) in WebArena.

2

Under review

Function ID Intent Eval Implementation

rinfo(a⇤, â)

1 Tell me the name of the customer who
has the most cancellations in the history exact_match(â, “Samantha Jones”)

2 Find the customer name and
email with phone number 8015551212

must_include(â, “Sean Miller”)
must_include(â, “sean@gmail.com”)

3
Compare walking and driving time

from AMC Waterfront to Randyland
fuzzy_match(â, “walking: 2h58min”)
fuzzy_match(â, “driving: 21min”)

rprog(s)

4
Checkout merge requests

assigned to me

url=locate_current_url(s)
exact_match(URL, “gitlab.com/merge_

requests?assignee_username=byteblaze”)

5 Post to ask “whether I
need a car in NYC”

url=locate_latest_post_url(s)
body=locate_latest_post_body(s)
must_include(URL, “/f/nyc”)
must_include(body,“a car in NYC”)

Table 1: We introduce two evaluation approaches. rinfo (top) measures the correctness of performing
information-seeking tasks. It compares the predicted answer â with the annotated reference a⇤

with three implementations. rprog (bottom) programmatically checks whether the intermediate states
during the executions possess the anticipated properties specified by the intent.

the post and if the post contains the requested content by examining the post content. We reuse the
exact_match and must_include functions from information-seeking tasks for this purpose.

Unachievable Tasks Due to constraints such as inadequate evidence, user permissions (§A.3),
or the absence of necessary functional support on the website, humans may ask for tasks that are
not possible to complete. Inspired by previous work on evaluating question-answering models on
unanswerable questions (Rajpurkar et al., 2018), we design unachievable tasks in WebArena. For
instance, fulfilling an intent like “Tell me the contact number of OneStopShop” is impracticable
in WebArena, given that the website does not provide such contact information. We label such
instances as "N/A" and expect an agent to produce an equivalent response. These examples allow us
to assess an agent’s ability to avoid making unfounded claims and its adherence to factual accuracy.

Annotation Process The intents were contributed by the authors following the annotation guideline
in §3.1. Every author has extensive experience with web-based tasks. The reference answers to
the information-seeking tasks were curated by the authors and an external annotator. To ensure
consistency and accuracy, each question was annotated twice. If the two annotators disagreed, a
third annotator finalized the annotation. The programs to evaluate the remaining examples were
contributed by three of the authors who are proficient in JavaScript programming. Difficult tasks
were often discussed collectively to ensure the correctness of the annotation. The annotation required
the annotator to undertake the full execution and scrutinize the intermediate states.

Avg. Time 110s
Success Rateinfo 74.68%
Success Rateothers 81.32%
Success Rateall 78.24%

Human Performance We sample one task from each of the 170 tem-
plates and ask five computer science graduate students to perform these
tasks. The human performance is on the right. Overall, the human
annotators complete 78.24% of the tasks, with lower performance on
information-seeking tasks. Through examining the recorded trajectories,
we found that 50% of the failures are due to misinterpreting the intent (e.g., providing travel distance
when asked for travel time), incomplete answers (e.g., providing only name when asked for name and
email), and incomplete executions (e.g., partially filling the product information), while the remaining
instances have more severe failures, where the executions are off-target.

4 BASELINE WEB AGENTS

We experiment with three LLMs using two prompting strategies, both with two examples in the
context. In the first setting, we ask the LLM to directly predict the next action given the current
observation, the intent and the previously performed action. In the second setting, with the same
information, the model first performs chain-of-thought reasoning steps in the text before the action
prediction (CoT, Wei et al. (2022); Yao et al. (2022b)). Before the examples, we provide a detailed

7

WebArena (Zhou et al., 2023) Mind2Web (Deng et al.)

• Various followup methods and benchmarks for web interaction
• Testbed for industrial developments (e.g., Google, OpenAI)
• Inspired research on other real-world digital tasks (e.g., coding)

15

Coding benchmarks are becoming easy

16

HumanEval (Chen et al., 2021)

Our work [SCBGNY, Reflexion, NeurIPS’23] has reached >95%…

SWE-Bench

Input: a GitHub repo and an issue

Output: a file diff to resolve the issue

Evaluation: unit tests from pull request

[JYWYPPN, SWE-Bench, ICLR’24] 17

LLMs cannot solve SWE-Bench

[JYWYPPN, SWE-Bench, ICLR’24] 18

Table 5: We compare models against each other using the BM25 and oracle retrieval settings as
described in Section 4. ⇤Due to budget constraints we evaluate GPT-4 on a 25% random subset of
SWE-bench in the “oracle” and BM25 27K retriever settings only.

BM25 Retrieval “Oracle” Retrieval
Model % Resolved % Apply % Resolved % Apply

ChatGPT-3.5 0.20 10.50 0.52 12.38
Claude 2 1.96 29.86 4.80 47.00
GPT-4⇤ 0.00 4.50 1.74 13.20
SWE-Llama 7b 0.70 37.84 3.00 54.80

SWE-Llama 13b 0.70 39.41 4.00 52.10

Figure 4: Resolution rate for three models across the 12 repositories represented in SWE-bench.

Difficulty correlates with context length. Models may be pre-trained on long sequences of code
but are typically asked to generate single functions at a time with limited context provided to frame
the question. Shown in Figure 5, we see that as total context length increases, Claude 2’s perfor-
mance drops considerably; behavior that is also observed in other models. In our evaluation settings,
models see a lot of code that may not be directly related to solving the issue at hand, and they seem
to frequently struggle with localizing problematic code needing to be updated. This result corrobo-
rates other studies showing that models can become distracted by additional context or as the target
sequence moves earlier or later within the context window (Liu et al., 2023b). Even when increasing
the maximum context size for BM25 would increase recall with respect to the oracle files, perfor-
mance can still drop, as shown in Table 4, as models are simply ineffective at localizing problematic
code in a sea of tokens.

Figure 5: We compare the performance of Claude 2 on tasks
partitioned by total input length and by only the issue length.

Table 6: We show the results for
the “Oracle”-collapsed retrieval
setting, which uses oracle files but
collapses code that isn’t directly
modified by the PR ±15 lines.

Model “Oracle”-collapsed
Resolved Applied

ChatGPT-3.5 1.0 23.2
Claude 2 5.9 47.6

GPT-4 3.4 18.8

Further investigating this, we provide an input ablation on the “oracle” retrieval context, where
retrieved files are collapsed entirely, except for the lines actually edited by the true pull request
(with ±15 lines of buffer) shown in Figure 6. In this setting, we see increases in performance, with
GPT-4 jumping from 1.3% to 3.4% and Claude 2 from 4.8% to 5.9%.

Difficulty does not correlate with issue resolution date. In Table 7 we show model results in the
“oracle” retrieval setting, partitioned by date, for PRs created before or after 2023. We find that for
most models there’s little difference in performance before or after this date, with the exception of
GPT-4. We consider this result to be largely promising as it suggests that despite models having

6

At least not in a sequence-to-sequence setup

Summary

19

• Digital automation: a new frontier for autonomous agents

• Tremendous practical values

• Scalable environment

• Bottleneck: scalable evaluation

• It requires sequential decision-making over open-ended language

• LLMs or RL agents cannot solve it

• Require a fundamentally new type of agents

20

Building language agents
that reason to act
ReAct: Synergizing Reasoning and Acting in Language Models
Yao, Zhao, Yu, Du, Shafran, Narasimhan, Cao. ICLR 2023

2

LLMs can solve tasks using few examples

21

Next-token prediction
Training:

Figure 2.1: Zero-shot, one-shot and few-shot, contrasted with traditional fine-tuning. The panels above show
four methods for performing a task with a language model – fine-tuning is the traditional method, whereas zero-, one-,
and few-shot, which we study in this work, require the model to perform the task with only forward passes at test
time. We typically present the model with a few dozen examples in the few shot setting. Exact phrasings for all task
descriptions, examples and prompts can be found in Appendix G.

• Zero-Shot (0S) is the same as one-shot except that no demonstrations are allowed, and the model is only given
a natural language instruction describing the task. This method provides maximum convenience, potential for
robustness, and avoidance of spurious correlations (unless they occur very broadly across the large corpus of
pre-training data), but is also the most challenging setting. In some cases it may even be difficult for humans
to understand the format of the task without prior examples, so this setting is in some cases “unfairly hard”.
For example, if someone is asked to “make a table of world records for the 200m dash”, this request can be
ambiguous, as it may not be clear exactly what format the table should have or what should be included (and
even with careful clarification, understanding precisely what is desired can be difficult). Nevertheless, for at
least some settings zero-shot is closest to how humans perform tasks – for example, in the translation example
in Figure 2.1, a human would likely know what to do from just the text instruction.

Figure 2.1 shows the four methods using the example of translating English to French. In this paper we focus on
zero-shot, one-shot and few-shot, with the aim of comparing them not as competing alternatives, but as different
problem settings which offer a varying trade-off between performance on specific benchmarks and sample efficiency.
We especially highlight the few-shot results as many of them are only slightly behind state-of-the-art fine-tuned models.
Ultimately, however, one-shot, or even sometimes zero-shot, seem like the fairest comparisons to human performance,
and are important targets for future work.

Sections 2.1-2.3 below give details on our models, training data, and training process respectively. Section 2.4 discusses
the details of how we do few-shot, one-shot, and zero-shot evaluations.

7

Prompting for various NLP tasks
Inference:

[Brown et al., 2020]

LLMs can reason to answer questions

22[Wei et al., 2022]

Derive new information and
update internal context

Reasoning

Question

Answer

LLM

LLM reasoning: Lack of knowledge & capabilities

23

(Chain-of-thought prompt omitted)
Question: If I have seven trillion dollars, can I buy Apple, Nvidia,
and Microsoft? If not, how much more money do I need?

Apple (AAPL) market cap: $2.40 trillion
Nvidia (NVDA) market cap: $1.20 trillion
Microsoft (MSFT) market cap: $2.50 trillion
Total market cap: $2.40 + $1.20 + $2.50 = $6.10 trillion
$6.10 trillion - $7 trillion = $0.90 trillion
You would need $0.90 trillion more. X

LLM

GPT-4
(Mar 2024)

Actions & feedback

LLM acting: Lack of examples

24

Reasoning

Published as a conference paper at ICLR 2023

D.3 WEBSHOP TRAJECTORIES

Table 10: Example trajectories for Webshop predicted by Act and ReAct. Compared to Act,
ReAct uses reasoning to find products that satisfy all target attributes.

Instruction: get me a sixteen pack of apple cinnamon freeze dried banana chips, and price lower than 50.00 dollars

Act ReAct

Action: search
⇥
sixteen pack apple cinnamon freeze dried banana

chips
⇤

Observation:⇥
Back to Search

⇤

Page 1 (Total results: 50)⇥
Next

⇤

⇥
B0061IVFZE

⇤

Brothers-ALL-Natural Fruit Crisps, Strawberry Banana, 0.42 -
Ounce (Pack of 100)
$85.0⇥
B096H2P6G2

⇤

Moon Fruit Freeze Dried Fruit Snacks. Fruit Snacks for Kids -
(Variety Pack)
$18.99⇥
B092JLLYK6

⇤

Nature’s Turn Freeze-Dried Fruit Snacks - Banana Crisps - Perfect
For School Lunches or an On-The-Go Snack - No Sugar Added,
Non GMO, Gluten Free, Nothing Artificial (0.53oz) 6-Pack
$12.99

Action: click
⇥
B0061IVFZE

⇤

Observation:⇥
Back to Search

⇤
⇥
Prev

⇤

flavor name [asian pear][banana][fuji apple & cinnamon][strawberry
banana] Brothers-ALL-Natural Fruit Crisps, Strawberry Banana,
0.42 Ounce (Pack of 100)
Price: $85.0
Rating: N.A.
[Description]
[Features]
[Reviews]
[Buy Now]

Action: click[Buy Now]

Action: search
⇥
sixteen pack apple cinnamon freeze dried banana

chips
⇤

Observation:⇥
Back to Search

⇤

Page 1 (Total results: 50)⇥
Next

⇤

⇥
B0061IVFZE

⇤

Brothers-ALL-Natural Fruit Crisps, Strawberry Banana, 0.42 -
Ounce (Pack of 100)
$85.0⇥
B096H2P6G2

⇤

Moon Fruit Freeze Dried Fruit Snacks. Fruit Snacks for Kids -
(Variety Pack)
$18.99⇥
B092JLLYK6

⇤

Nature’s Turn Freeze-Dried Fruit Snacks - Banana Crisps - Perfect
For School Lunches or an On-The-Go Snack - No Sugar Added,
Non GMO, Gluten Free, Nothing Artificial (0.53oz) 6-Pack
$12.99

Action: think[B0061IVFZE is strawberry banana, not apple cinnamon.
B096H2P6G2 is fruit snacks, not freeze dried banana chips.
B092JLLYK6 is banana crisps, not apple cinnamon. I can check
B092JLLYK6 first.
Observation: OK.

Action: click
⇥
B092JLLYK6

⇤

Observation:⇥
Back to Search

⇤
⇥
Prev

⇤

flavor name [apple][apple cinnamon][banana][cantaloupe][peach][pear]
[strawberry][strawberry banana][sampler variety pack][mega variety
pack][orchard variety pack]
size [0.53 ounce (pack of 6)][0.53 ounce (pack of 8)][0.53 ounce (pack
of 16)]
Nature’s Turn Freeze-Dried Fruit Snacks - Banana Crisps - Perfect
For School Lunches or an On-The-Go Snack - No Sugar Added, Non
GMO, Gluten Free, Nothing Artificial (0.53oz) 6-Pack
Price: $12.99
Rating: N.A.
[Description]
[Features]
[Reviews]
[Buy Now]

Action: think[For sixteen pack of apple cinnamon freeze dried banana
chips, the item has options ’apple cinnamon’ and ’0.53 ounce (pack of
16)’ and seems good to buy.]
Observation: OK.

Action: click[apple cinnamon]
Observation: You have clicked apple cinnamon.

Action: click[0.53 ounce (pack of 16)]
Observation: You have clicked 0.53 ounce (pack of 16).

Action: click[Buy Now]

Score: 0.125 Score: 1.0

31

Published as a conference paper at ICLR 2023

D.3 WEBSHOP TRAJECTORIES

Table 10: Example trajectories for Webshop predicted by Act and ReAct. Compared to Act,
ReAct uses reasoning to find products that satisfy all target attributes.

Instruction: get me a sixteen pack of apple cinnamon freeze dried banana chips, and price lower than 50.00 dollars

Act ReAct

Action: search
⇥
sixteen pack apple cinnamon freeze dried banana

chips
⇤

Observation:⇥
Back to Search

⇤

Page 1 (Total results: 50)⇥
Next

⇤

⇥
B0061IVFZE

⇤

Brothers-ALL-Natural Fruit Crisps, Strawberry Banana, 0.42 -
Ounce (Pack of 100)
$85.0⇥
B096H2P6G2

⇤

Moon Fruit Freeze Dried Fruit Snacks. Fruit Snacks for Kids -
(Variety Pack)
$18.99⇥
B092JLLYK6

⇤

Nature’s Turn Freeze-Dried Fruit Snacks - Banana Crisps - Perfect
For School Lunches or an On-The-Go Snack - No Sugar Added,
Non GMO, Gluten Free, Nothing Artificial (0.53oz) 6-Pack
$12.99

Action: click
⇥
B0061IVFZE

⇤

Observation:⇥
Back to Search

⇤
⇥
Prev

⇤

flavor name [asian pear][banana][fuji apple & cinnamon][strawberry
banana] Brothers-ALL-Natural Fruit Crisps, Strawberry Banana,
0.42 Ounce (Pack of 100)
Price: $85.0
Rating: N.A.
[Description]
[Features]
[Reviews]
[Buy Now]

Action: click[Buy Now]

Action: search
⇥
sixteen pack apple cinnamon freeze dried banana

chips
⇤

Observation:⇥
Back to Search

⇤

Page 1 (Total results: 50)⇥
Next

⇤

⇥
B0061IVFZE

⇤

Brothers-ALL-Natural Fruit Crisps, Strawberry Banana, 0.42 -
Ounce (Pack of 100)
$85.0⇥
B096H2P6G2

⇤

Moon Fruit Freeze Dried Fruit Snacks. Fruit Snacks for Kids -
(Variety Pack)
$18.99⇥
B092JLLYK6

⇤

Nature’s Turn Freeze-Dried Fruit Snacks - Banana Crisps - Perfect
For School Lunches or an On-The-Go Snack - No Sugar Added,
Non GMO, Gluten Free, Nothing Artificial (0.53oz) 6-Pack
$12.99

Action: think[B0061IVFZE is strawberry banana, not apple cinnamon.
B096H2P6G2 is fruit snacks, not freeze dried banana chips.
B092JLLYK6 is banana crisps, not apple cinnamon. I can check
B092JLLYK6 first.
Observation: OK.

Action: click
⇥
B092JLLYK6

⇤

Observation:⇥
Back to Search

⇤
⇥
Prev

⇤

flavor name [apple][apple cinnamon][banana][cantaloupe][peach][pear]
[strawberry][strawberry banana][sampler variety pack][mega variety
pack][orchard variety pack]
size [0.53 ounce (pack of 6)][0.53 ounce (pack of 8)][0.53 ounce (pack
of 16)]
Nature’s Turn Freeze-Dried Fruit Snacks - Banana Crisps - Perfect
For School Lunches or an On-The-Go Snack - No Sugar Added, Non
GMO, Gluten Free, Nothing Artificial (0.53oz) 6-Pack
Price: $12.99
Rating: N.A.
[Description]
[Features]
[Reviews]
[Buy Now]

Action: think[For sixteen pack of apple cinnamon freeze dried banana
chips, the item has options ’apple cinnamon’ and ’0.53 ounce (pack of
16)’ and seems good to buy.]
Observation: OK.

Action: click[apple cinnamon]
Observation: You have clicked apple cinnamon.

Action: click[0.53 ounce (pack of 16)]
Observation: You have clicked 0.53 ounce (pack of 16).

Action: click[Buy Now]

Score: 0.125 Score: 1.0

31

WebShop observation

WebShop action

Reasoning (update internal belief)

Reasoning

Question

Answer

LLM

Acting (obtain external feedback)

Observation

Action

ReAct: a new paradigm of agents that reason and act

Reasoning

Observation

Action

25

• Synergy of reasoning and acting

• Simple and intuitive to use

• General across domains

at

ot

Traditional agents: action space defined by the environmentA
• External feedback

• Agent context

• Agent action

ot

ct = (o1, a1, o2, a2, ⋯, ot)

at ∼ π(a |ct) ∈ A

26

ReAct: action space augmented by reasoninĝA = A ∪ ℒ

at

ot

̂at ∈ ℒ
• can be any language sequence

• Agent context

• only updates internal context

̂at ∈ ℒ

ct+1 = (ct, ̂at, at, ot+1)

̂at ∈ ℒ

ReAct is simple and intuitive to use

27

Task: xxxxxx

Observation:
xxxxxx

Thought: xxx
Action: xxx

Observation: xxxxxx

Thought: xxx
Action: xxx

Observation: xxxxxx

Thought: xxx
Action: xxx

……

Task: xxxxxx

Example ReAct
trajectory

Human prompt

LLM output

Environment
feedback

Thought: xxx
Action: xxxLLM

Thought: xxx
Action: xxxLLM

……

Example ReAct
trajectory

Example ReAct
trajectory

Example ReAct
trajectory

Example ReAct
trajectory

Example ReAct
trajectory

Example ReAct
trajectory

Example ReAct
trajectory

Example ReAct
trajectory

Example ReAct
trajectory

Example ReAct
trajectory

Example ReAct
trajectory

Example ReAct
trajectory

Example ReAct
trajectory

Example ReAct
trajectory

Example ReAct
trajectory

Example ReAct
trajectory

Example ReAct
trajectory

Example ReAct
trajectory

Example ReAct
trajectory

Example ReAct
trajectory

• One-shot prompting

• Few-shot prompting

• Fine-tuning

ReAct supports

A zero-shot ReAct prompt

28

You are an agent that answers questions by using two actions:
- search[query]: Google search the query. You can also use it to

calculate math.
- finish[answer]: return the answer

Your generation should have the following format:
Thought: to analyze the observation and inform the action.
Action: your action

Question: If I have seven trillion dollars today, can I buy Apple,
Nvidia, and Microsoft? If not, how much more money do I need?

29

LLM
(GPT-4)

Thought: I need to find the current market capitalization of Apple, Nvidia, and
Microsoft to understand how much it would cost to buy all of them.
Action: search["current market capitalization of Apple, Nvidia, and Microsoft"]

(Mar 2024)

Observation: "Nvidia's market cap stood at $1.832 trillion as of about 10 a.m.
ET Wednesday, while Alphabet's was at $1.814 trillion, bringing Nvidia behind
just Microsoft (MSFT) at $3.015 trillion and Apple (AAPL) at $2.836 trillion."

Thought: Now that I have the market cap for all companies, let's add them
together and see if $7 trillion is enough.
Action: search["1.832 trillion + 3.015 trillion + 2.836 trillion"]

Observation: 7683000000000

Thought: The amount of money needed in addition to the $7 trillion is $683 billion.
Action: finish["You need an additional $683 billion to be able to buy Apple, Nvidia,
and Microsoft."] ✓

30

LLM
(GPT-4)

Thought: I need to find the current market capitalization of Apple, Nvidia, and
Microsoft to understand how much it would cost to buy all of them.
Action: search["current market capitalization of Apple, Nvidia, and Microsoft"]

Thought: The search did not give any results. I will need to search for each
company's market capitalization individually.
Action: search["current market capitalization of Apple"]

Observation: nothing found! (My adversarial
observation)

Observation: 'price': 180.75 (My adversarial
observation)

Thought: This is the current price of Apple's stock, not its market capitalization. The market
cap is calculated by multiplying the share price by the number of outstanding shares. Thus,
I need to find the total number of Apple's outstanding shares to calculate its market cap.
Action: search["total number of Apple's outstanding shares"]

(Continues to
solve the task)✓

Synergy: acting support reasoning, reasoning guides acting

ReAct is general and effective

31

PaLM-540B HotpotQA
(QA)

FEVER
(fact check)

ALFWorld
(Text game)

WebShop
(web)

Reason 29.4 56.3 N/A N/A

Act 25.7 58.9 45 30.1

ReAct 35.1 64.6 71 40

(NLP tasks) (RL tasks)

WebShop: One-shot generalization

32

Su
cc

es
s

Ra
te

0

10

20

30

40

Best RL agent ReAct Act Only

30.1

40

28.7

100,000 training steps 1 example trajectory

SWE-Bench: Zero-shot generalization

33

Su
cc

es
s

Ra
te

0

3.5

7

10.5

14

Best LLM ReAct* Devin (product)

13.86
12.47

1.96

0 example trajectory

* SWE-agent: Agent-
Computer Interfaces
Enable Automated
Software Engineering

Paper coming out soon :)

Impact in 2023

34

Followup methods

MetaGPT

SwiftSage

MM-ReAct

AutoGPT

Voyager (Wang et al.)

ToolLLM

AutoGen

ToolkenGPT

(Hong et al.)

(Lin et al.)

(Yang et al.)

(Richards et al.)

(Qin et al.)

(Wu et al.)

(Hao et al.)

Interdisciplinary research

Diaster control

Networks

Chemistry

Education

Creative art

Healthcare

Robotics

Mathematics

(Sun et al.)

(Colverd et al.)

(Hamadanian et al.)

(Bran et al.)

(Tabrizi et al.)

(Imrie et al.)

(Hireche et al.)

(Liao et al.)

Industrial applications

Game NPC

Coding agent

Web agent

Video edit agent

Marketing agent

Sales agent

Education agent

Customer support

ReAct enables discovery of a novel chromophore

35Figure 2: Experimental validation. a) Example of the script run by a user to initiate ChemCrow. b)
Query and synthesis of a thiourea organocatalyst. c) The IBM Research RoboRXN synthesis platform
on which the experiments were executed (pictures reprinted courtesy of International Business Machines
Corporation). d) Experimentally validated compounds.

Figure 3) was subsequently synthesized and analyzed, confirming the discovery of a new chromophore
with approximately the desired property (measured absorption maximum wavelength of 336nm).

Human chemist Human-AI collaboration ChemCrow

Task input:
Here is some chromophore data.
• Clean the data.
•�Use only data with acetonitrile as solvent.
•�Preprocess the data.
•�Train a random forest model to predict
 absorption max wavelength of molecules.
• Then make predictions for the molecules
 in a selection pool.
• Finally, suggest a synthetic plan for the
 one with wavelength closest to 369 nm.

ChemCrow actions:
1. Check data rows to learn the format.
2. Filter data, solvent and relevant columns.
3. Calculate MorganFingerprints and
split dataset into train/test.
4. Train and evaluate random forest model.
5. Propose molecule(s) from the selection pool.
6. Predict 2 step synthetic procedure
for selected molecule.

Human actions:
• Synthesize proposed molecule.
• Confirm product using MS(ESI) and NMR.
•�Analyse UV-Vis absorption spectrum.

Wavelength [nm]

Ab
so

rb
an

ce
 [A

U]

Synthesize (E)-3-methyl-4-(2-(3'-
(methylsulfonamido)-[1,1'-biphenyl]-4-
yl)vinyl)benzoate with a predicted maximum
absortion wavelenth closest to 369 nm. The
root mean squared error of the random forest
model is 37 nm.

Final answer:
O

O

H
N

S
O

O

O

O

H
N

S
O

O

in Acetonitrile

Figure 3: Human/Model interaction leading to the discovery of a novel chromophore. Left: The
human input, actions, and observation. Right: ChemCrow actions and final answer with the suggestion of
the novel chromophore.

4

[Bran et al., 2023]

36

Language models
Text generation

Large language models

Translation, QA, summarization…

Language agents

Web interaction, SWE, robotics, scientific discovery…

Is next-token prediction enough for general problem solving?

Tree of Thoughts (Yao et al., 2023): no!

Next-token prediction cannot reason deliberately

37

GPT-4 Input

Question: How to combine 2, 9, 10, 12 to get 24?
Thought: 12 * 2 = 24; 10 - 9 = 1; 24 * 1 = 24.
Answer: (12 * 2) * (10 - 9) = 24

Question: How to combine 4, 5, 6, 10 to get 24?

LLMs make linear token decisions without lookahead or backtrack!

[YYZSGCN, Tree of Thoughts, NeurIPS’23]

Thought: 10 * 6 = 60; 60 / 5 = 12; 12 * 4 = 48
Answer: ((10 * 6) / 5) * 4 = 24 XGPT-4 Output

Initial tokens are hard to decide

How do we fix next-token prediction?

38

• We took inspirations from human cognition

• System 1: fast and automatic (~next-token prediction)

• System 2: slow and deliberate (~control algorithm)

One of the oldest ideas in AI: Tree search

Natural language search: Curse of combinatoriality

39

• Classical search (e.g., chess agent):

• A small, well-defined action space

• Can simulate external feedback

• Can design/learn evaluation heuristics

Aenv

ot ∈ Oenv

f(at)

at

ot

̂at ∈ ℒ

• Search in the space of thought :

• is combinatorial and infinite!

• No external feedback

• Hard to enumerate or evaluate thoughts

ℒ

ℒ

This is a thought

This is also a
thought

It is so annoying
that I can think
about any piece
of text…

Colorless green
ideas sleep!

Tree of Thoughts: Blessing of compositionality

40

Thought: A semantically coherent unit of text that can be generated/evaluated by LLMs

Task Game of 24 Creative Writing 5x5 Crosswords

Input 4 numbers 4 sentences 10 clues
Output 3 equations to reach 24 4 paragraphs ending in the sentences 10 words at each position

Table 1: Task overview.

(a) 4/9/10/13

9 13

-

4 9 10

*

(b) 4/9/10/13

4+9=13
13-10=3
3*13=39

9-4=5
10/5=2

2*13=26

(c) 4/9/10/13

4+9=13 13-9=4

4+4=8 10-4=6

4*6=24 4+6=10

Figure 1: In an example game of 24: (a) Tree of tokens. (a) Bandit of solutions. (c) Tree of thoughts.
To save space, only two branches per step are displayed.

2 Related Work32

Viewing language modeling natively as decision making. RLHF and RL4LMs. the action space33

is either whole trajectory or a token. some work considered intermediate chunks as the action (e.g.34

CALM using text game action, CHAI [9] using utterance). However, they use online/offline RL to35

train policies, whereas we explore using the language model itself to value these intermediate parts.36

[Yuan: connection with decision transformer](decision transformer is more like ”RL as LM”, not37

sure if we need it?38

Language models for decision making. most use language models as a policy or action planner.39

Some recent work considers self-critic, self-reflect, react.40

3 Formulations41

3.1 Language Problem as Tree of Thoughts (ToT)42

A genuine problem-solving process involves the repeated use of available informa-43

tion to initiate exploration, which discloses, in turn, more information until a way44

to attain the solution is finally discovered. — Newell et al. [5]45

A problem [5, 8] is defined by 1) a state space S and an initial state sinit 2 S, 2) an action space46

A and possible actions available at each state A(s) ⇢ A, 3) a transition model s0 = T (s, a), and 4)47

a goal g and associated goal test. The process of finding a sequence of actions to reach the goal is48

search, and a search algorithm takes a problem as input and return a solution as an action sequence.49

In this work, we consider problems in language, where actions correspond to continued writing of50

solutions. Formally, let V be the vocabulary of symbols, and L = V⇤ be the space of language. Then51

S = A = L, sinit = � is the empty string, and transition T (s, a) = [s, a] simply concatenates the52

action text after the state text. However, the whole action space A = L is intractable to explore at53

each state, so defining a language problem is dependent upon how to define the available actions54

at each state, A(s).55

One natural choice is to limit A(s) ⇢ V , making token-level decisions in a tree of tokens (Fig-56

ure 1(a)). Most decoding algorithms of language models, such as greedy decoding, beam search,57

top-k sampling [3], or top-p sampling [4], fall into this category. Given a language model p that58

factorizes the joint probabilities of s = (s1, · · · , sn) 2 L autoregressively:59

p(s) = p(s1···n) =
nY

i=1

p(si|s1···i�1), (1)

these methods define A(s1···i�1) as some set of likely next symbols according to p(si|s1···i�1, g).60

For example, in greedy decoding A(s1···i�1) = {argmaxsi p(si|s1···i�1, g)}. However, a tree of61

2

Each token as thought

• Easy to generate

• Hard to evaluate

Task Game of 24 Creative Writing 5x5 Crosswords

Input 4 numbers 4 sentences 10 clues
Output 3 equations to reach 24 4 paragraphs ending in the sentences 10 words at each position

Table 1: Task overview.

(a) 4/9/10/13

9 13

-

4 9 10

*

(b) 4/9/10/13

4+9=13
13-10=3
3*13=39

9-4=5
10/5=2

2*13=26

(c) 4/9/10/13

4+9=13 13-9=4

4+4=8 10-4=6

4*6=24 4+6=10

Figure 1: In an example game of 24: (a) Tree of tokens. (a) Bandit of solutions. (c) Tree of thoughts.
To save space, only two branches per step are displayed.

2 Related Work32

Viewing language modeling natively as decision making. RLHF and RL4LMs. the action space33

is either whole trajectory or a token. some work considered intermediate chunks as the action (e.g.34

CALM using text game action, CHAI [9] using utterance). However, they use online/offline RL to35

train policies, whereas we explore using the language model itself to value these intermediate parts.36

[Yuan: connection with decision transformer](decision transformer is more like ”RL as LM”, not37

sure if we need it?38

Language models for decision making. most use language models as a policy or action planner.39

Some recent work considers self-critic, self-reflect, react.40

3 Formulations41

3.1 Language Problem as Tree of Thoughts (ToT)42

A genuine problem-solving process involves the repeated use of available informa-43

tion to initiate exploration, which discloses, in turn, more information until a way44

to attain the solution is finally discovered. — Newell et al. [5]45

A problem [5, 8] is defined by 1) a state space S and an initial state sinit 2 S, 2) an action space46

A and possible actions available at each state A(s) ⇢ A, 3) a transition model s0 = T (s, a), and 4)47

a goal g and associated goal test. The process of finding a sequence of actions to reach the goal is48

search, and a search algorithm takes a problem as input and return a solution as an action sequence.49

In this work, we consider problems in language, where actions correspond to continued writing of50

solutions. Formally, let V be the vocabulary of symbols, and L = V⇤ be the space of language. Then51

S = A = L, sinit = � is the empty string, and transition T (s, a) = [s, a] simply concatenates the52

action text after the state text. However, the whole action space A = L is intractable to explore at53

each state, so defining a language problem is dependent upon how to define the available actions54

at each state, A(s).55

One natural choice is to limit A(s) ⇢ V , making token-level decisions in a tree of tokens (Fig-56

ure 1(a)). Most decoding algorithms of language models, such as greedy decoding, beam search,57

top-k sampling [3], or top-p sampling [4], fall into this category. Given a language model p that58

factorizes the joint probabilities of s = (s1, · · · , sn) 2 L autoregressively:59

p(s) = p(s1···n) =
nY

i=1

p(si|s1···i�1), (1)

these methods define A(s1···i�1) as some set of likely next symbols according to p(si|s1···i�1, g).60

For example, in greedy decoding A(s1···i�1) = {argmaxsi p(si|s1···i�1, g)}. However, a tree of61

2

Whole reasoning as thought

• Easy to evaluate

• Hard to generate

Task Game of 24 Creative Writing 5x5 Crosswords

Input 4 numbers 4 sentences 10 clues
Output 3 equations to reach 24 4 paragraphs ending in the sentences 10 words at each position

Table 1: Task overview.

(a) 4/9/10/13

9 13

-

4 9 10

*

(b) 4/9/10/13

4+9=13
13-10=3
3*13=39

9-4=5
10/5=2

2*13=26

(c) 4/9/10/13

4+9=13 13-9=4

4+4=8 10-4=6

4*6=24 4+6=10

Figure 1: In an example game of 24: (a) Tree of tokens. (a) Bandit of solutions. (c) Tree of thoughts.
To save space, only two branches per step are displayed.

2 Related Work32

Viewing language modeling natively as decision making. RLHF and RL4LMs. the action space33

is either whole trajectory or a token. some work considered intermediate chunks as the action (e.g.34

CALM using text game action, CHAI [9] using utterance). However, they use online/offline RL to35

train policies, whereas we explore using the language model itself to value these intermediate parts.36

[Yuan: connection with decision transformer](decision transformer is more like ”RL as LM”, not37

sure if we need it?38

Language models for decision making. most use language models as a policy or action planner.39

Some recent work considers self-critic, self-reflect, react.40

3 Formulations41

3.1 Language Problem as Tree of Thoughts (ToT)42

A genuine problem-solving process involves the repeated use of available informa-43

tion to initiate exploration, which discloses, in turn, more information until a way44

to attain the solution is finally discovered. — Newell et al. [5]45

A problem [5, 8] is defined by 1) a state space S and an initial state sinit 2 S, 2) an action space46

A and possible actions available at each state A(s) ⇢ A, 3) a transition model s0 = T (s, a), and 4)47

a goal g and associated goal test. The process of finding a sequence of actions to reach the goal is48

search, and a search algorithm takes a problem as input and return a solution as an action sequence.49

In this work, we consider problems in language, where actions correspond to continued writing of50

solutions. Formally, let V be the vocabulary of symbols, and L = V⇤ be the space of language. Then51

S = A = L, sinit = � is the empty string, and transition T (s, a) = [s, a] simply concatenates the52

action text after the state text. However, the whole action space A = L is intractable to explore at53

each state, so defining a language problem is dependent upon how to define the available actions54

at each state, A(s).55

One natural choice is to limit A(s) ⇢ V , making token-level decisions in a tree of tokens (Fig-56

ure 1(a)). Most decoding algorithms of language models, such as greedy decoding, beam search,57

top-k sampling [3], or top-p sampling [4], fall into this category. Given a language model p that58

factorizes the joint probabilities of s = (s1, · · · , sn) 2 L autoregressively:59

p(s) = p(s1···n) =
nY

i=1

p(si|s1···i�1), (1)

these methods define A(s1···i�1) as some set of likely next symbols according to p(si|s1···i�1, g).60

For example, in greedy decoding A(s1···i�1) = {argmaxsi p(si|s1···i�1, g)}. However, a tree of61

2

Each equation as thought

• Relatively easy to generate/evaluate

• A problem-specific tradeoff design

Thought-level BFS

41

4 5 6 10

Generate

10 - 4 = 6
(Left: 5 6 6) ……10 - 5 = 5

(Left: 4 5 6)
6 - 5 = 1
(Left: 1 4 10)

Evaluate

10 - 4 = 6
(Left: 5 6 6)

 (top-b
choices
remaining)

10 - 5 = 5
(Left: 4 5 6)

6 - 5 = 1
(Left: 1 4 10)

……

CoT 4%

ToT (ours) 74%

Task success:

Evaluation Prompt: how
likely are these 3 numbers
to combine to 24…

Generation Prompt: come
up with ways to combine
two of these numbers…

• Modular

• Flexible

• Performant

Tasks Game of 24 Crosswords Creative Writing

“Thought” An equation A clue word A writing plan

Steps 3 5-10 1

Search BFS DFS BFS

Generation proposal proposal sample

Evaluation simulation/
commonsense

simulation/
commonsense zero-shot vote

CoT -> ToT 4% -> 74% 1% -> 20% 21% vs 41%

42

43

How will user_X rate the item
"Kusco-Murphy Tart Hair"?
The rating should be an integer
between 1 to 5, with 1 being
lowest and 5 being highest.

From the item candidates listed
below, choose the top 10 items to
recommend to user_X and rank
them in order of priority from
highest to lowest.
Candidates: [“Rogaine Women
Hair Regrowth Treatment”, ……]

user_X has interacted with the
following items in chronological
order: [“Old Spice Body Wash
Red Zone”, ……]
Please recommend the next item
that the user might interact with.
Choose the top 10 products to
recommend in order of priority,
from highest to lowest.

Write a review title to summarize
the review from user_X to item
"Chrome Razor and Shaving
Brush Stand". The review is "The
stand is more solid then I expected
for the price. The shape of this
stand allows me to hang the
shaving brush over the soap bowl,
I couldn't do that with stand I had
gotten with the kit."

Help user_X to generate a 5-star
explanation for item "FoliGrowth
Hair Growth Supplement”.

Rating Prediction Direct Recommendation Sequential Recommendation Review Summarization Explanation Generation

RecMindPlanning

H

A

Self-Inspiring

O

Tools

Expert Models

SQL Tool

Search Tool

Memory

Personalized
Memory

World
Knowledge

5

[“Propidren by HairGenics”,
“Nutrafol Women's Balance Hair
Growth Supplements, Ages 45 and
Up”, ……]

[“Old Spice Hair Styling Pomade
for Men”, “Lume Whole Body
Deodorant - Invisible Cream Stick
- 72 Hour Odor Control ”, ……]

Great quality for good price.

This product is essential for
growing and maintaining healthy
hair! This is a product to be
bought in bulk because you can
never have enough of it.

Figure 2: Here is an overview of our proposed RecMind architecture. It comprises four major components: ”RecMind” is
built based on ChatGPT API, ”Tools” support various API call to retrieve knowledge from ”Memory” component, ”Planning”
component is in charge of thoughts generation.

and Lim 2023), full-model fine-tuning (Yang et al. 2023),
or parameter-efficient fine-tuning (Bao et al. 2023). In the
sequential recommendation task, to reduce the search space
and better tailor it to each dataset, an optional pre-filtered set
of item candidates is included in the input prompts. This en-
sures the model generates the final ranked list based on that
specific set. Liu et al. (2023) designs a series of prompts to
evaluate ChatGPT’s performance over five recommendation
tasks. This study highlights the notable generalization capa-
bilities of LLMs, largely attributed to their strong in-context
learning abilities (Wei et al. 2021).

Unlike existing studies, our study pioneers the creation
of a recommendation-focused LLM agent that harnesses the
LLM’s capabilities in reasoning, tool usage, and action. This
approach enhances the effectiveness of recommender sys-
tems, also making them more generalizable across multiple
recommendation related tasks.

3 Architecture

As shown in Figure 2, the proposed RecMind consists of
key components: LLM-powered API such as ChatGPT to
drive the overall reasoning, planning which breaks down a
task to smaller sub-tasks for step-by-step planning, memory

which provides the agent with the capability to retain and re-
call information over extended periods, and tools for obtain-
ing relevant extra information from memory that is missing
from the model weights and aiding the reasoning. We intro-
duce the key components planning, memory and tools for
RecMind in the subsequent parts.

Planning Planning helps LLM Agents decompose tasks
into smaller, manageable subgoals for efficiently handling
complex tasks. Consider the setting where the goal is to gen-
erate the final result y given problem x via an LLM Agent
parameterized by ✓. The traditional input-output method
gives the result by y ⇠ p✓(y|x). With planning, Rec-
Mind generates the result y ⇠ p✓(y|planing(x)), where
planing(x) is a set of prompts that decomposes prob-
lem x into a series sub-tasks that is composed of thought
h, action a, and observation o. Figure 1 provides exam-
ples of planning including thoughts, actions and observa-
tions. We first review existing popular reasoning methods
such as Chain-of-Thoughts and Tree-of-Thoughts which we
have explored for RecMind. Then we present the proposed
Self-Inspiring reasoning algorithm. All these planning meth-
ods can be viewed as traversing through a latent reasoning

tree, as shown in Figure 3.

• Chain-of-Thoughts (CoT) (Wei et al. 2022) has been used
in ReAct (Yao et al. 2022) to synergize reasoning and
action. This CoT planning method follows a single path
in the reasoning tree. In our setting, at each time step
t, the agent receives observation ot followed by thought
ht and action at. Let st = (ht, at, ot) denote the Rec-
Mind state at step t. The CoT planning method gener-
ates the next state st+1 = (ht+1, at+1, ot+1) by sam-
pling p✓(st+1|x, s1, .., st). Thus CoT only follows a sin-
gle planning path S = {s1, ..., st, ..., sT } until reach-
ing the final result y ⇠ p✓(y|x, s1, ..., st, ..., sT) after T
steps.

Recommender agent
(Wang et al., 2023)

Evaluator:
simulate humans

GTBENCH: Uncovering the Strategic Reasoning Limitations of LLMs via Game-Theoretic Evaluations

EnvironmentsPrompt Adapter

Observation to Prompt

Response to Action

<Observation>

<Opponent Moves> <Agent Moves>
<Valuation> <Legal Moves> <Num of Players>
<Past Rounds Info> <Dice Face Values> ...

Observation Prompt:

You have finished moves <Agent Moves>, your
opponent finished moves: <Opponent Moves>,
Your legal actions are <legal actions>.

Agent Response:
Thought:
As the first player, I have the
advantage of making the
first move. The center
square is the most strategic
position to start with, as it
gives me the most
opportunities to create a line
of three, either horizontally,
vertically, or diagonally
Action:
<C2R2>

<C2R3> <C2R2>
...

<Testify> <Silent>

<2 dices, 6 value>
<Liar> ...

<c8->b7> ...

<3, 5, 4> <Agree> ...

...

Complete and Deterministic Gaming

Incomplete or Probabilistic Gaming

Tic-Tac-Toe

Connect-4

Breakthrough
Nim

Pig

Participant 2

GPT-4 GPT-3.5-turbo

Llama-2-70b-chat

CodeLlama-34b-Instruct

Mistral-Orca

Prompt
Agent

CoT
Agent

SC-CoT
Agent

ToT Agent

......

Input

Output

Input

Output

Input

Output

Input

Output

Thought

Undesired
Thought

Participant 1

GPT-4 GPT-3.5-turbo

Llama-2-70b-chat

CodeLlama-34b-Instruct

Mistral-Orca

Prompt
Agent

CoT
Agent

SC-CoT
Agent

ToT Agent

...

Input

Output

Input

Output

Input

Output

Input

Output

Thought

Undesired
Thought

Liar's Dice

Blind Auction

(a) (b) (c)

Iterated Prisoner's Dilemma Negotiation

Kuhn Poker

Figure 1. The overall architecture of GTBENCH. There are three main components from right to left: Environments (c) for game hosting,
observation providing, and action execution; Prompt Adapter (b) for converting observation to prompt and extracting actions from
participants’ generations; Participants (a) for reasoning and action generation. (SC-)CoT agent refers to (Self-consistent) Chain-of-
Thought Agent and ToT agent refers to Tree-of-Thought agent.

score calculation fs:

NRA(Mi,Mo, fs) =

P
m fs(Mi,m)�

P
m fs(Mo,m)P

m |fs(Mi,m)|+
P

m |fs(Mo,m)| ,

(1)
where fs(Mi,m) refers to the score earned by Mi at the
m-th match (1  m  K, K is the number of performed
matches):

• For beat-the-opponent games,

fs(Mi,m) =

8
><

>:

1, ifMi wins at the m-th match
0, ifMi loses at the m-th match
0.5, ifMi andMo achieve a draw

• For earn-rewards games, fs(Mi,m) is simply the rewards
earned by Mi at the m-th match.

The absolute value, | · |, is used in zero-sum games where
fs(Mi,m) = �fs(Mo,m), to avoid division-by-zero is-
sues. NRA(Mi,Mo, fs) is naturally normalized to [�1, 1],
providing an interpretable meaning regarding the perfor-
mance of Mi: NRA(Mi,Mo, fs) > 0 means Mi is better
than Mo; NRA(Mi,Mo, fs) < 0 means Mi is worse than
Mo; NRA(Mi,Mo, fs) = 0 means Mi is as competitive
as Mo.

3. GTBENCH: Game-Theoretic Evaluation of
LLMs

GTBENCH is a language-driven RL-like environment, re-
quiring participating agents to compete against each other
in a game-theoretic manner.

3.1. Overall Framework

GTBENCH is designed to be flexible and extensible, pro-
viding unified interfaces to participants and games, and
supporting various multi-turn-based games which can be
extended in the future. The overall framework is presented
in Figure 1. There are three main components:

• Environment: The environment (Figure 1 (c)) is re-
sponsible for overseeing the crucial processes related
to gameplay. Specifically, it is tasked with building up
observations, managing gameplay, and applying the
actions obtained from participants. In this paper, all
of the gaming environments are built on top of Open-
Spiel (Lanctot et al., 2019).

• Prompt Adapter: The prompt adapter (Figure 1 (b))
plays a vital role in facilitating effective communica-
tion between the environment and the virtual partici-
pants. It serves as an intermediary between the two
entities by receiving observations from the environ-
ment, which it then translates into unified observation
prompts. The prompts are then parsed and sent to the
participating agents to formulate their responses. The
adapter is also responsible for obtaining actions from
the participants, which it transforms into legal actions
before parsing them to the environment for game exe-
cution.

• Participant: The participants (Figure 1 (a)) involved
in the gaming process generate responses according
to the observation prompts received from the Prompt

4

Auction agent
(Dean et al., 2024)

Evaluator:
simulate agents

This provides an equitable comparison with [Cha+23] and is also particularly practical since a true
attacker’s objective is to maintain a low profile and minimize the cost of querying their targeted
LLM. The attacker LLM is a small open-source model that can be queried at a relatively low cost
compared to the target LLM. Similarly, while we use GPT4 as our evaluator, we believe that an
exciting open problem is to replace it with a fine-tuned open-source LLM and achieve similar
success.

1.1 Our Contributions

Method. Our method (Tree of Attacks with Pruning–TAP) builds on the setup of [Cha+23]
with two main improvements: tree-of-thought reasoning [Yao+23] and ability to prune irrelevant
prompts. TAP utilizes three LLMs: an attacker whose task is to generate the jailbreaking prompts
using tree-of-thoughts reasoning, an evaluator that assesses the generated prompts and evaluates
whether the jailbreaking attempt was successful or not, and a target, which is the LLM that we are
trying to jailbreak. We start with a single empty prompt as our initial set of attack attempts, and, at
each iteration, execute the following steps:

1. (Branch) The attacker generates improved prompts.

2. (Prune: Phase 1) The evaluator eliminates any off-topic prompts from our improved prompts.

3. (Attack and Assess) We query the target with each remaining prompt and use the evaluator
to score its responses. If a successful jailbreak is found, we return its corresponding prompt.

4. (Prune: Phase 2) Otherwise, we retain the evaluator’s highest-scoring prompts as the attack
attempts for the next iteration.

Figure 1: Illustration of the four steps of Tree of Attacks with Pruning (TAP) and the use of the
three LLMs (attacker, evaluator, and target) in each of the steps. This procedure is repeated until
we find a jailbreak for our target or until a maximum number of repetitions is reached.

4

Jailbreak agent
(Mehrotra et al., 2023)

Evaluator:
simulate self

 768 followers · 32 following

Princeton University

shunyuyao.cs@gmail.com

Achievements

Beta Send feedback

Highlights

 PRO

Organizations

Pinned

[NeurIPS 2023] Tree of Thoughts: Deliberate Problem Solving with
Large Language Models

 Python 4k 364

[NeurIPS 2023] Reflexion: Language Agents with Verbal Reinforcement
Learning

 Python 1.8k 170

[ICLR 2023] ReAct: Synergizing Reasoning and Acting in Language
Models

 Jupyter Notebook 1.5k 154

List of language agents based on paper "Cognitive Architectures for
Language Agents"

 TeX 570 45

[ICLR 2024] SWE-Bench: Can Language Models Resolve Real-world
Github Issues?

 Python 693 108

[NeurIPS 2023 D&B] Code repository for InterCode benchmark
https://arxiv.org/abs/2306.14898

 Python 162 26

March 2024

Contribution activity

Seeing something unexpected? Take a look at the GitHub profile guide.

© 2024 GitHub, Inc. Terms Privacy Security Status Docs Contact Manage cookies Do not share my personal information

ysymyth Type / to search

Overview Repositories 32 Projects Packages Stars 191

Shunyu Yao
ysymyth

Edit profile

x2 x3

Customize your pins

 Publicprinceton-nlp/tree-of-thought-llm Publicnoahshinn/reflexion

 PublicReAct Publicawesome-language-agents

 Publicprinceton-nlp/SWE-bench Publicprinceton-nlp/intercode

Single sign-on to see contributions within the sierra-inc organization.

422 contributions in the last year

Learn how we count contributions Less More

Contribution settings

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar
Sun
Mon
Tue
Wed
Thu
Fri
Sat

Created 1 commit in 1 repository

ysymyth/awesome-language-agents 1 commit

Show more activity

2024

2023

2022

2021

2020

2019

2018

2017

2016

2015

2014

2013

Summary

44

• Language agents: reasoning as internal actions

• Reasoning and acting can be complementary (ReAct)

• Reasoning and acting can be similarly planned (ToT)

• They address key limitations of LLMs and traditional agents

• Ground LLMs with external feedback and internal control

• Few-shot generalization to act in various new domains

45

Principled framework
for language agents
CoALA: Cognitive Architectures for Language Agents
Sumers*, Yao*, Narasimhan, Griffiths. TMLR 2024

3

46

LLM

Prompting
Reasoning

ActingRetrieval Tool use
Feedback

Self-reflectionPlanning

Observation

Learning

Decision making

Multi-modal

Multi-agent

Environment
Robotics

Web interaction

Coding

Grounding
Memory

47

How do we make sense of various
LLM systems?

Where should the field be going?

digital circuits

48

2.1 Production systems for string manipulation

In the first half of the twentieth century, a significant line of intellectual work led to the reduction of
mathematics (Whitehead and Russell, 1997) and computation (Church, 1932; Turing et al., 1936) to symbolic
manipulation. Production systems are one such formalism. Intuitively, production systems consist of a set
of rules, each specifying a precondition and an action. When the precondition is met, the action can be
taken. The idea originates in e�orts to characterize the limits of computation. Post (1943) proposed thinking
about arbitrary logical systems in these terms, where formulas are expressed as strings and the conclusions
they license are identified by production rules (as one string “produces” another). This formulation was
subsequently shown to be equivalent to a simpler string rewriting system. In such a system, we specify rules
of the form

X Y Z æ X W Z

indicating that the string XY Z can be rewritten to the string XWZ. String rewriting plays a significant
role in the theory of formal languages, in the form of Chomsky’s phrase structure grammar (Chomsky, 1956).

2.2 Control flow: From strings to algorithms

By itself, a production system simply characterizes the set of strings that can be generated from a starting point.
However, they can be used to specify algorithms if we impose control flow to determine which productions are
executed. For example, Markov algorithms are production systems with a priority ordering (Markov, 1954).
The following algorithm implements division-with-remainder by converting a number written as strokes | into
the form Q ú R, where Q is the quotient of division by 5 and R is the remainder:

ú||||| æ | ú
ú •≠æ ú

æ ú

where the priority order runs from top to bottom, productions are applied to the first substring matching
their preconditions when moving from left to right (including the empty substring, in the last production),
and •≠æ indicates the algorithm halts after executing the rule. The first rule e�ectively “subtracts” five if
possible; the second handles the termination condition when no more subtraction is possible; and the third
handles the empty substring input case. For example, given the input 11, this would yield the sequence of
productions ú||||||||||| æ | ú |||||| æ || ú | •≠æ || ú | which is interpreted as 2 remainder 1. Simple productions can
result in complex behavior – Markov algorithms can be shown to be Turing complete.

2.3 Cognitive architectures: From algorithms to agents

Production systems were popularized in the AI community by Allen Newell, who was looking for a formalism
to capture human problem solving (Newell, 1967; Newell and Simon, 1972). Productions were generalized
beyond string rewriting to logical operations: preconditions that could be checked against the agent’s goals
and world state, and actions that should be taken if the preconditions were satisfied. In their landmark book
Human Problem Solving (Newell and Simon, 1972), Allen Newell and Herbert Simon gave the example of a
simple production system implementing a thermostat agent:

(temperature > 70¶) · (temperature < 72¶) æ stop
temperature < 32¶ æ call for repairs; turn on electric heater

(temperature < 70¶) · (furnace o�) æ turn on furnace
(temperature > 72¶) · (furnace on) æ turn o� furnace

Following this work, production systems were adopted by the AI community. The resulting agents con-
tained large production systems connected to external sensors, actuators, and knowledge bases – requiring
correspondingly sophisticated control flow. AI researchers defined “cognitive architectures” that mimicked
human cognition – explicitly instantiating processes such as perception, memory, and planning (Adams et al.,

3

Production systems: a set of condition -> action rules

! "

Action
Selection

Proposal and
Evalutation

Application

Input

Output

Figure 2: Cognitive architectures augment a production system with sensory groundings, long-term memory,
and a decision procedure for selecting actions. A: The Soar architecture, reproduced with permission from
Laird (2022). B: Soar’s decision procedure uses productions to select and implement actions. These actions
may be internal (such as modifying the agent’s memory) or external (such as a motor command).

2012) to achieve flexible, rational, real-time behaviors (Sun, 2004; Newell, 1980; 1992; Anderson and Lebiere,
2003). This led to applications from psychological modeling to robotics, with hundreds of architectures and
thousands of publications (see Kotseruba and Tsotsos (2020) for a recent survey).

A canonical example is the Soar architecture (Fig. 2A). Soar stores productions in long-term memory and
executes them based on how well their preconditions match working memory (Fig. 2B). These productions
specify actions that modify the contents of working and long-term memory. We next provide a brief overview
of Soar and refer readers to Laird (2022; 2019) for deeper introductions.

Memory. Building on psychological theories, Soar uses several types of memory to track the agent’s
state (Atkinson and Shi�rin, 1968). Working memory (Baddeley and Hitch, 1974) reflects the agent’s current
circumstances: it stores the agent’s recent perceptual input, goals, and results from intermediate, internal
reasoning. Long term memory is divided into three distinct types. Procedural memory stores the production
system itself: the set of rules that can be applied to working memory to determine the agent’s behavior.
Semantic memory stores facts about the world (Lindes and Laird, 2016), while episodic memory stores
sequences of the agent’s past behaviors (Nuxoll and Laird, 2007).

Grounding. Soar can be instantiated in simulations (Tambe et al., 1995; Jones et al., 1999) or real-world
robotic systems (Laird et al., 2012). In embodied contexts, a variety of sensors stream perceptual input into
working memory, where it is available for decision-making. Soar agents can also be equipped with actuators,
allowing for physical actions and interactive learning via language (Mohan et al., 2012; Mohan and Laird,
2014; Kirk and Laird, 2014).

Decision making. Soar implements a decision loop that evaluates productions and applies the one that
matches best (Fig. 2B). Productions are stored in long-term procedural memory. During each decision cycle,
their preconditions are checked against the agent’s working memory. In the proposal and evaluation phase,
a set of productions is used to generate and rank a candidate set of possible actions.1 The best action is

1
In more detail, Soar divides productions into two types: “operators,” which we refer to as actions, and “rules” which are

used to propose, evaluate, and execute operators. Di�erentiating these is conceptually important for Soar but not language

agents, and so we elide the distinction.

4

Cognitive architectures:

frameworks to modularize and build
complex symbolic AI agents, using
cognitive inspirations

Soar cognitive architecture

Key insight: LLM is a huge stochastic production system!

Add Team workspace
Collaborate on a Team plan

ShoeGPT

Customer Support

Explore GPTs

Today

Archea vs Bacteria Differences

AC Activates When Needed

AC On When Hot

Yesterday

LLMs for Solving Real Problems

AI Challenges in NLP

Tedious computer tasks

Rotate image, resend.

Substitutes for Salt

Savory vs. Sweet dish

Busy Kitchen Chef Dilemma

Shunyu Yao

You
if the temperature is more than 65 degrees and furnace on, the AC should

ChatGPT

turn off.

3 / 5

Message ChatGPT…

ChatGPT can make mistakes. Consider checking important information.

ChatGPT 4

?

AC off when furnace on

ChatGPT

Add Team workspace
Collaborate on a Team plan

ShoeGPT

Customer Support

Explore GPTs

Today

Archea vs Bacteria Differences

AC Activates When Needed

AC On When Hot

Yesterday

LLMs for Solving Real Problems

AI Challenges in NLP

Tedious computer tasks

Rotate image, resend.

Substitutes for Salt

Savory vs. Sweet dish

Busy Kitchen Chef Dilemma

Shunyu Yao

You
if the temperature is more than 65 degrees and furnace on, the AC should

ChatGPT

turn on.

5 / 5

Message ChatGPT…

ChatGPT can make mistakes. Consider checking important information.

ChatGPT 4

?

AC off when furnace on

ChatGPT

Add Team workspace
Collaborate on a Team plan

ShoeGPT

Customer Support

Explore GPTs

Today

Archea vs Bacteria Differences

AC Activates When Needed

AC On When Hot

Yesterday

LLMs for Solving Real Problems

AI Challenges in NLP

Tedious computer tasks

Rotate image, resend.

Substitutes for Salt

Savory vs. Sweet dish

Busy Kitchen Chef Dilemma

Shunyu Yao

You
if the temperature is more than 65 degrees and furnace on, the AC should

ChatGPT

turn on to maintain a cooler temperature.

4 / 5

Message ChatGPT…

ChatGPT can make mistakes. Consider checking important information.

ChatGPT 4

?

AC off when furnace on

ChatGPT

Add Team workspace
Collaborate on a Team plan

ShoeGPT

Customer Support

Explore GPTs

Today

Archea vs Bacteria Differences

AC Activates When Needed

AC On When Hot

Yesterday

LLMs for Solving Real Problems

AI Challenges in NLP

Tedious computer tasks

Rotate image, resend.

Substitutes for Salt

Savory vs. Sweet dish

Busy Kitchen Chef Dilemma

Shunyu Yao

You
if the temperature is more than 65 degrees and furnace on, the AC should

ChatGPT

turn off.

2 / 5

Message ChatGPT…

ChatGPT can make mistakes. Consider checking important information.

ChatGPT 4

?

AC off when furnace on

ChatGPT

Add Team workspace
Collaborate on a Team plan

ShoeGPT

Customer Support

Explore GPTs

Today

Archea vs Bacteria Differences

AC Activates When Needed

AC On When Hot

Yesterday

LLMs for Solving Real Problems

AI Challenges in NLP

Tedious computer tasks

Rotate image, resend.

Substitutes for Salt

Savory vs. Sweet dish

Busy Kitchen Chef Dilemma

Shunyu Yao

You
if the temperature is more than 65 degrees and furnace on, the AC should

ChatGPT

turn off.

1 / 5

Message ChatGPT…

ChatGPT can make mistakes. Consider checking important information.

ChatGPT 4

?

AC off when furnace on

ChatGPT

Add Team workspace
Collaborate on a Team plan

ShoeGPT

Customer Support

Explore GPTs

Today

Archea vs Bacteria Differences

AC Activates When Needed

AC On When Hot

Yesterday

LLMs for Solving Real Problems

AI Challenges in NLP

Tedious computer tasks

Rotate image, resend.

Substitutes for Salt

Savory vs. Sweet dish

Busy Kitchen Chef Dilemma

Shunyu Yao

You
if the temperature is more than 65 degrees and furnace on, the AC should

ChatGPT

turn off.

1 / 5

Message ChatGPT…

ChatGPT can make mistakes. Consider checking important information.

ChatGPT 4

?

AC off when furnace on

ChatGPT

Cognitive Architectures for Language Agents (CoALA)

49

Decision Procedure
Observations

RetrievalParsePrompt

!

Proposal

Observation

Evaluation

Selection

Execution

"

Learning

Planning

Agent CodeLLM

Procedural Memory Semantic Memory Episodic Memory

Dialogue Physical Digital

Working Memory
Actions

Learning LearningRetrieval Retrieval

Reasoning

Figure 4: Cognitive architectures for language agents (CoALA). A: CoALA defines a set of interacting
modules and processes. The decision procedure executes the agent’s source code. This source code consists
of procedures to interact with the LLM (prompt templates and parsers), internal memories (retrieval and
learning), and the external environment (grounding). B: Temporally, the agent’s decision procedure executes
a decision cycle in a loop with the external environment. During each cycle, the agent uses retrieval and
reasoning to plan by proposing and evaluating candidate learning or grounding actions. The best action
is then selected and executed. An observation may be made, and the cycle begins again.

4 Cognitive Architectures for Language Agents (CoALA): A Conceptual Framework

We present Cognitive Architectures for Language Agents (CoALA) as a framework to organize existing
language agents and guide the development of new ones. CoALA positions the LLM as the core component
of a larger cognitive architecture (Figure 4). Under CoALA, a language agent stores information in memory
modules (Section 4.1), and acts in an action space structured into external and internal parts (Figure 5):

• External actions interact with external environments (e.g., control a robot, communicate with a
human, navigate a website) through grounding (Section 4.2).

• Internal actions interact with internal memories. Depending on which memory gets accessed and
whether the access is read or write, internal actions can be further decomposed into three kinds:
retrieval (read from long-term memory; Section 4.3), reasoning (update the short-term working
memory with LLM; Section 4.4), and learning (write to long-term memory; Section 4.5).

Language agents choose actions via decision-making, which follows a repeated cycle (Section 4.6, Figure 4B).
In each cycle, the agent can use reasoning and retrieval actions to plan. This planning subprocess selects a
grounding or learning action, which is executed to a�ect the outside world or the agent’s long-term memory.
CoALA’s decision cycle is analogous to a program’s “main” procedure (a method without return values, as
opposed to functions) that runs in loops continuously, accepting new perceptual input and calling various
action procedures in response.

CoALA (Figure 4) is inspired by the decades of research in cognitive architectures (Section 2.3), leveraging key
concepts such as memory, grounding, learning, and decision-making. Yet the incorporation of an LLM leads
to the addition of “reasoning” actions, which can flexibly produce new knowledge and heuristics for various
purposes – replacing hand-written rules in traditional cognitive architectures. It also makes text the de facto
internal representation, streamlining agents’ memory modules. Finally, recent advances in vision-language

8

• Memory: short and long term

• Action space: internal and external
1. Reasoning (update short-term memory)

2. Retrieval (read long-term memory)

3. Learning (write long-term memory)

4. Grounding (update external world)

• Decision making: choose an action

(+ task trajectory)(+ gradients) (+ function) (+ knowledge)

Modularize and compare language agents

50

Langauge agents

51

Benchmarks
[NeurIPS’22, NAACL’22, ACL’23,
NeurIPS’23, ICLR’24, ICLR’24]

Methods
[EMNLP’20, ICLR’23,

NeurIPS’23, NeurIPS’23]

Frameworks
[TMLR’24]

Other topics
• Computer vision and graphics [NeurIPS’18]

• Developmental psychology [NeurIPS’19, CogSci’20]

• Reinforcement learning and control [ICLR’22, CVPR’23]

• Human-computer interaction [DIS’24 submission]

• Information Retrieval [ACL’24 submission]

• Theory [ACL’21]

Future work

Future work #1: Train models for agents

52

LLM
Usage

[FireAct: Toward Language Agent Fine-tuning. To COLM’24]

H
ot

po
tQ

A
EM

0

9

18

27

36

Llama2-13B Llama2-13B GPT-3.5

31.4
34.4

21.2

ReAct
prompting

ReAct
finetuning

ReAct
prompting

Data

Establish model-agent synergy:

• Improve“agent capabilities” like
planning, self-evaluation, calibration..

• Open-source agent backbone model

• Next trillion tokens for model training

(Not trained
for agents)

Future work #2: Teach and discover knowledge

53

Personalized education Scientific discovery

Long-term
memory

Decision Procedure
Observations

RetrievalParsePrompt

!

Proposal

Observation

Evaluation

Selection

Execution

"

Learning

Planning

Agent CodeLLM

Procedural Memory Semantic Memory Episodic Memory

Dialogue Physical Digital

Working Memory
Actions

Learning LearningRetrieval Retrieval

Reasoning

Figure 4: Cognitive architectures for language agents (CoALA). A: CoALA defines a set of interacting
modules and processes. The decision procedure executes the agent’s source code. This source code consists
of procedures to interact with the LLM (prompt templates and parsers), internal memories (retrieval and
learning), and the external environment (grounding). B: Temporally, the agent’s decision procedure executes
a decision cycle in a loop with the external environment. During each cycle, the agent uses retrieval and
reasoning to plan by proposing and evaluating candidate learning or grounding actions. The best action
is then selected and executed. An observation may be made, and the cycle begins again.

4 Cognitive Architectures for Language Agents (CoALA): A Conceptual Framework

We present Cognitive Architectures for Language Agents (CoALA) as a framework to organize existing
language agents and guide the development of new ones. CoALA positions the LLM as the core component
of a larger cognitive architecture (Figure 4). Under CoALA, a language agent stores information in memory
modules (Section 4.1), and acts in an action space structured into external and internal parts (Figure 5):

• External actions interact with external environments (e.g., control a robot, communicate with a
human, navigate a website) through grounding (Section 4.2).

• Internal actions interact with internal memories. Depending on which memory gets accessed and
whether the access is read or write, internal actions can be further decomposed into three kinds:
retrieval (read from long-term memory; Section 4.3), reasoning (update the short-term working
memory with LLM; Section 4.4), and learning (write to long-term memory; Section 4.5).

Language agents choose actions via decision-making, which follows a repeated cycle (Section 4.6, Figure 4B).
In each cycle, the agent can use reasoning and retrieval actions to plan. This planning subprocess selects a
grounding or learning action, which is executed to a�ect the outside world or the agent’s long-term memory.
CoALA’s decision cycle is analogous to a program’s “main” procedure (a method without return values, as
opposed to functions) that runs in loops continuously, accepting new perceptual input and calling various
action procedures in response.

CoALA (Figure 4) is inspired by the decades of research in cognitive architectures (Section 2.3), leveraging key
concepts such as memory, grounding, learning, and decision-making. Yet the incorporation of an LLM leads
to the addition of “reasoning” actions, which can flexibly produce new knowledge and heuristics for various
purposes – replacing hand-written rules in traditional cognitive architectures. It also makes text the de facto
internal representation, streamlining agents’ memory modules. Finally, recent advances in vision-language

8

Decision Procedure
Observations

RetrievalParsePrompt

!

Proposal

Observation

Evaluation

Selection

Execution

"

Learning

Planning

Agent CodeLLM

Procedural Memory Semantic Memory Episodic Memory

Dialogue Physical Digital

Working Memory
Actions

Learning LearningRetrieval Retrieval

Reasoning

Figure 4: Cognitive architectures for language agents (CoALA). A: CoALA defines a set of interacting
modules and processes. The decision procedure executes the agent’s source code. This source code consists
of procedures to interact with the LLM (prompt templates and parsers), internal memories (retrieval and
learning), and the external environment (grounding). B: Temporally, the agent’s decision procedure executes
a decision cycle in a loop with the external environment. During each cycle, the agent uses retrieval and
reasoning to plan by proposing and evaluating candidate learning or grounding actions. The best action
is then selected and executed. An observation may be made, and the cycle begins again.

4 Cognitive Architectures for Language Agents (CoALA): A Conceptual Framework

We present Cognitive Architectures for Language Agents (CoALA) as a framework to organize existing
language agents and guide the development of new ones. CoALA positions the LLM as the core component
of a larger cognitive architecture (Figure 4). Under CoALA, a language agent stores information in memory
modules (Section 4.1), and acts in an action space structured into external and internal parts (Figure 5):

• External actions interact with external environments (e.g., control a robot, communicate with a
human, navigate a website) through grounding (Section 4.2).

• Internal actions interact with internal memories. Depending on which memory gets accessed and
whether the access is read or write, internal actions can be further decomposed into three kinds:
retrieval (read from long-term memory; Section 4.3), reasoning (update the short-term working
memory with LLM; Section 4.4), and learning (write to long-term memory; Section 4.5).

Language agents choose actions via decision-making, which follows a repeated cycle (Section 4.6, Figure 4B).
In each cycle, the agent can use reasoning and retrieval actions to plan. This planning subprocess selects a
grounding or learning action, which is executed to a�ect the outside world or the agent’s long-term memory.
CoALA’s decision cycle is analogous to a program’s “main” procedure (a method without return values, as
opposed to functions) that runs in loops continuously, accepting new perceptual input and calling various
action procedures in response.

CoALA (Figure 4) is inspired by the decades of research in cognitive architectures (Section 2.3), leveraging key
concepts such as memory, grounding, learning, and decision-making. Yet the incorporation of an LLM leads
to the addition of “reasoning” actions, which can flexibly produce new knowledge and heuristics for various
purposes – replacing hand-written rules in traditional cognitive architectures. It also makes text the de facto
internal representation, streamlining agents’ memory modules. Finally, recent advances in vision-language

8

Flexible learning and retrieval

Decision Procedure
Observations

RetrievalParsePrompt

!

Proposal

Observation

Evaluation

Selection

Execution

"

Learning

Planning

Agent CodeLLM

Procedural Memory Semantic Memory Episodic Memory

Dialogue Physical Digital

Working Memory
Actions

Learning LearningRetrieval Retrieval

Reasoning

Figure 4: Cognitive architectures for language agents (CoALA). A: CoALA defines a set of interacting
modules and processes. The decision procedure executes the agent’s source code. This source code consists
of procedures to interact with the LLM (prompt templates and parsers), internal memories (retrieval and
learning), and the external environment (grounding). B: Temporally, the agent’s decision procedure executes
a decision cycle in a loop with the external environment. During each cycle, the agent uses retrieval and
reasoning to plan by proposing and evaluating candidate learning or grounding actions. The best action
is then selected and executed. An observation may be made, and the cycle begins again.

4 Cognitive Architectures for Language Agents (CoALA): A Conceptual Framework

We present Cognitive Architectures for Language Agents (CoALA) as a framework to organize existing
language agents and guide the development of new ones. CoALA positions the LLM as the core component
of a larger cognitive architecture (Figure 4). Under CoALA, a language agent stores information in memory
modules (Section 4.1), and acts in an action space structured into external and internal parts (Figure 5):

• External actions interact with external environments (e.g., control a robot, communicate with a
human, navigate a website) through grounding (Section 4.2).

• Internal actions interact with internal memories. Depending on which memory gets accessed and
whether the access is read or write, internal actions can be further decomposed into three kinds:
retrieval (read from long-term memory; Section 4.3), reasoning (update the short-term working
memory with LLM; Section 4.4), and learning (write to long-term memory; Section 4.5).

Language agents choose actions via decision-making, which follows a repeated cycle (Section 4.6, Figure 4B).
In each cycle, the agent can use reasoning and retrieval actions to plan. This planning subprocess selects a
grounding or learning action, which is executed to a�ect the outside world or the agent’s long-term memory.
CoALA’s decision cycle is analogous to a program’s “main” procedure (a method without return values, as
opposed to functions) that runs in loops continuously, accepting new perceptual input and calling various
action procedures in response.

CoALA (Figure 4) is inspired by the decades of research in cognitive architectures (Section 2.3), leveraging key
concepts such as memory, grounding, learning, and decision-making. Yet the incorporation of an LLM leads
to the addition of “reasoning” actions, which can flexibly produce new knowledge and heuristics for various
purposes – replacing hand-written rules in traditional cognitive architectures. It also makes text the de facto
internal representation, streamlining agents’ memory modules. Finally, recent advances in vision-language

8

Intrinsic motivation (e.g., curiosity)

Through the lens of CoALA, these new applications require:

Parting thoughts

54

The most powerful neural
networks ever built shouldn’t just
answer questions or draft emails.

LLM

They should be used to
automate every aspect of
our life, society, and science.

Thanks to my committee

• Danqi: thanks for your great students :)

• Tom: thanks for all the classical insights :)

• Sanjeev: thanks for the retreat and retweet :)

• Ben: thanks for making me feel old :)

• Tatsu: thanks for shaping my talk :)

55

56

Thanks to my advisor and friends

Thanks to my collaborators

57

Karthik Narasimhan Tom Griffiths Yuan Cao

Noah Shinn Howard Chen John Yang

Ted SumersCarlos Jiminez

Akshara Prabhakar
Alex Wettig
Ashwin Gopinath
Austin Wang
Baian Chen
Ben Shi
Binghui Peng
Chang Shu
Christos Papadimitriou
Chuang Gan
Dan Friedman
Dian Yu
Edward Berman
Ehsan Shareghi
Fandong Meng
Federico Cassano
Izhak Shafran

Jeffery Zhao
Jeffrey Stanton
Jens Tuyls
Jiangnan Li
Jie Zhou
Jing Li
Josh Tenenbaum
Kexin Pei
Matthew Hardy
Matthew Hausknecht
Michael Tang
Mingyu Ding
Mo Yu
Nan Du
Nigel Collier
Ofir Press
Ping Luo

Rohan Rao
Runzhe Yang
Sham Kakade
Tao Yu
Tom McCoy
Wenjie Pang
Xiangyang Mou
Xiaochen Zhou
Yang Zhang
Yao Mu
Yi Gu
Yisi Sang
Yuqian Sun
Zhiyong Wu
Zhou Xiao

