
Research Statement Shunyu Yao

My research applies large language models (LLMs) to the core problem of AI: building
autonomous agents to interact with the world. Taking insights from natural language pro-
cessing (NLP), reinforcement learning (RL), and cognitive science (CogSci), I have made
core contributions to establishing the emerging field of “language agents” (Fig. 1), which
ground LLMs for sequential decision-making in various digital and physical environments,
and unlock next-gen AI products like ChatGPT plugins and Microsoft Copilot. Concretely,

1. I have developed foundational and domain-agnostic methods to adapt LLM
reasoning for acting [26], learning [12], and planning [24], which are widely adopted
in various domains, such as art [14], healthcare [7], robotics [6], education [1], disaster
control [2], fact checking [10], networks [5], and autonomous driving [3].

2. I have introduced new types of AI benchmarks based on scalable and practical lan-
guage interactions, such as web shopping [17], coding [28], and software engineering [8],
which are hard to solve but easy to evaluate and transfer to real-world usage.

3. I have proposed a theoretical framework [23] inspired by symbolic AI and CogSci
to organize various language agents in simple, unified terms, blueprint their future de-
velopments, and formulate their study as an independent and interdisciplinary subject.

Internal mechanisms
ReAct [26], ToT [12],
Reflexion [24], CoALA [23]

External environments
WebShop [17], InterCode [28],
SWE-bench [8], Collie [16]

Language Agent

……

Interdisciplinary
Collaborations

RL, CV, Control

CogSci, HCI

Systems, Security

Real-world
Applications

Automated coding

Personal assistant

Knowledge discovery
……

Figure 1: I study language agents, a new kind of autonomous agents based on large language models.
Four years ago, when the potential of language models was just being tapped by GPT-2,

and only small-scale combinations of language and RL were explored in individual toy tasks,
my work [22] was one of the first to envision and explore agents based on language models,
capable of acting in various environments using pre-trained knowledge and minimal adaption.
Today, LLMs have undergone significant advancements, and the need for such interactive
language agents has become evident: even the biggest LLMs like GPT-4 know limited things
and hallucinate. But by generating actions and accessing feedback iteratively, language
agents can obtain new knowledge, correct mistakes, and interface with the world to achieve
goals. Compared to rule-based or RL agents, they also alleviate intensive, domain-specific
heuristics design or training, accessible for non-experts to develop various applications.

In the next few years, I envision language agents being responsibly and widely deployed
in digital and physical worlds, automating various tasks in our work and life, and discovering
new knowledge in science. I am excited to gain insights from and collaborate with
researchers in various areas, like systems, security, policy, programming languages (PL),
human-computer interaction (HCI), computer vision (CV), NLP, CogSci, RL, robotics, the-
ory, and computational sciences, in order to advance such an interdisciplinary future agenda.
Below is a summary of my past work and some more concrete future research directions.

1

https://ysymyth.github.io
https://openai.com/blog/chatgpt-plugins
https://www.microsoft.com/en-us/copilot

Research Statement Shunyu Yao

1. Developing Language Agents that Reason to Act

Without actions and feedback, LLMs cannot avoid hallucination or affect the world. But
once grounded, the challenge often switches to an explosion of possible actions, due to the
compositionality of language and open-endedness of environments. For example, a web agent
could type billions of search queries and navigate millions of sites, as opposed to Atari agents
with tens of fixed actions. This is exacerbated when only a few example trajectories are given
in the LLM context for imitation, as opposed to millions of training steps in RL.

Observation: You see a
cabinet and a table…

Observation: You are cooking
a dish and seeing salt is out…

Action: Turn right

Action: Open cabinet

Thought: “The dish should be
savory, so I should find the
soy sauce to replace salt. It is
in the cabinet to my right…”

(a) ReAct

Input

 Output

(b) Tree of Thoughts

 ”good”
thought

 ”bad”
thought

(c) CoALA

Retrieve Learn

Long-term Memory

Environment

Working Memory

Environment

LLM
Ground

Reason

Figure 2: In ReAct [26], reason-
ing informs and improves acting.

To improve decision-making in large action spaces, my work
ReAct [26] proposed the key idea that the action space of a lan-
guage agent (e.g., search[a query]) can be augmented by reasoning
(think[a thought]). Correspondingly, humans can easily annotate
thoughts that explain and inform their actions, so that agents can
leverage the reasoning pattern to better generalize in new scenar-
ios (Fig. 2). ReAct achieved state-of-the-art results across diverse
NLP and RL domains, and boosts human-agent alignment: unlike
black box RL policies, humans can examine and diagnose ReAct
agents via text thoughts, and modify them to correct or control
agent behaviors. Due to its simplicity and generality, ReAct has been the most widespread
method for language agents, the basis of follow-up projects like AutoGPT, and the core of
the LangChain package downloaded by millions of users to develop LLM-based applications.

Input

 Output

 ”good”
thought

 ”bad”
thought

Figure 3: In ToT [24], LLMs sys-
tematically generate and evalu-
ate thoughts in a tree search.

However, LLMs generate reasoning token by token without
backtracking or looking ahead, which becomes brittle as mistakes
inevitably occur over a long horizon, yet autoregressive inference
lacks mechanisms to correct and avoid them. One of my solutions
is to introduce feedback signals, like runtime errors or self-created
unit test results in coding, to interrupt agents from acting to learn-
ing: Reflexion [12] uses LLM reasoning to self-reflect, and store re-
flections across trials to self-improve via language update instead
of gradient descent. Another of my solutions, Tree of Thoughts
(ToT) [24], proposes to augment LLMs with a tree search algo-
rithm (e.g., DFS, BFS) that maintains diverse continuation choices
of reasoning (“thoughts”) and explores them systematically using
LLM evaluation as search heuristics (Fig. 3). Using GPT-4 on Game of 24 and Crosswords,
ToT improves the popular Chain of Thoughts (CoT) prompting from 7%/1% to 74%/35%
respectively, showing the potential of how classical algorithms and LLMs can be synergized.

2. Benchmarking Language Agents with Digital Applications

Benchmarks for traditional AI agents struggle to be both practical and scalable. Practical
tasks that interact with humans (e.g., dialogue) or physical environments (e.g., robotics)
face difficulty collecting trajectories or reward signals at scale. Thus most RL algorithms are
developed in digital games or simulations with unlimited interactions and rewards, but are
hard to transfer to real-world usage. To develop language agents, my work has created a new

2

https://ysymyth.github.io
https://github.com/Significant-Gravitas/AutoGPT
https://www.langchain.com

Research Statement Shunyu Yao

kind of AI problem: practical digital applications in scalable language-based environments.

One such domain is the Internet, which has a colossal scale with numerous applications.
Despite prior efforts to benchmark web interaction, the key challenge often is scalable and
faithful evaluation: web trajectories could be long, complex, and diverse, making it hard
to compare to a reference trajectory, unreliable to adopt LLM-based evaluation, and expen-
sive to collect human judgments. My key idea is to find a domain that is easy to evaluate
the outcome rather than the process. Thus we built WebShop [17], a shopping website envi-
ronment with millions of real-world products, where an agent needs to read webpages, type
queries, and click buttons to buy a product that satisfies the user instruction. It challenges
visual understanding, reading comprehension, long-horizon exploration, and provides simple
and faithful rewards by comparing the instruction and chosen product attributes. It has
been widely used by OpenAI, Google, and other labs for agent evaluation and development.

Figure 1: Overview of InterCode. Setting up an interactive code environment with InterCode requires
a Dockerfile, dataset, reward function definition, and a small amount of subclass implementation.
The interactive loop between agent and environment closely mirrors real world software development
processes. While InterCode task performance is generally quantified as a binary 0/1 completion score,
InterCode allows for the design of more complex evaluation criteria that can incorporate execution
output and the effects of interaction on the state space.

revision, 2) there is a disconnect between the code generation process and its downstream execution
on the desired software and hardware environment, and 3) there is little room for human intervention
or collaboration in the code generation process.

Recently, some works have proposed the use of execution feedback or interaction [47] to benefit code
generation models [24, 21, 48, 20]. However, these papers consider their own individual setup and
are difficult to compare with one other due to the use of different compilers, execution environments,
feedback signals, and assumptions on the interactive process such as human participation to create
task descriptions or provide natural language feedback. This makes it difficult to compare existing
methods for code generation and to clearly understand the benefits of interactive generation.

To address these issues, we propose InterCode, the first standard coding benchmark designed natively
with an interactive execution environment. Closely mimicking the human decision-making process,
InterCode allows a coding agent to interactively receive feedback from compilers/interpreters that
execute its code, and to submit further refinements. We design InterCode to be like a standard
reinforcement learning (RL) environment that requires minimal human intervention and one in which
generated code is treated as actions, which are executed to reveal observations. Our framework
is (1) language and platform agnostic and can easily be used for new coding problems, (2) uses
self-contained Docker environments to provide safe execution, and (3) compatible out-of-the-box
with traditional seq2seq generation methods, while also enabling and empowering the development
of new interactive techniques.

We demonstrate the power of the framework by implementing Bash, SQL, and Python tasks within
InterCode, building on pre-existing static datasets [62, 32, 4]. We perform experiments across diverse
models and prompting methods, including ReAct [51] and Plan & Solve [43]. Our findings concretely
showcase the benefits of interaction towards solving coding tasks, discuss the distribution of distinct
code understanding challenges across different task settings, and explore the ease with which new
tasks and datasets can be defined using InterCode.

2

Figure 4: InterCode [28] agents
leverage execution feedback in
code terminals to better code.

Another useful and data-rich domain is programming, with unit
tests as a desirable outcome evaluation. However, prior bench-
marks focused on simple problems (often solvable within ten lines)
in a sequence-to-sequence (seq2seq) setup, whereas humans pro-
gram interactively with execution feedback for much harder prob-
lems. This motivated InterCode [28] and SWE-bench [8], where
we transformed seq2seq datasets into interactive environments
(Fig. 4), and real-world GitHub issues into repository-scale code
understanding and generation challenges. These represent two crit-
ical directions toward automating real-world software engineering.

Besides web and code interaction, I have also created practical and scalable tasks to gen-
erate text under constraints [16] and answer character-related questions in long books [29] or
TV scripts [11], which require agentic interactions to either incorporate feedback or navigate
long context and serve to evaluate and develop useful language agents in a sustainable way.

3. Formulating Language Agents with Interdisciplinary Insights

Interact with External
Environments

1. Grounding

Interact with
Working Memory

2. Reasoning

Action Space

Long-term Memory

Internal
Memories

3. Retrieval 4. Learning
Read Long-term Memory Write Long-term Memory

Figure 5: CoALA [23] system-
atizes the action space of each
language agent into four parts.

Language agents as a new subject in AI have had a vast array of
empirical projects and ideas, yet a lack of standardized terms and
unifying frameworks make it hard to compare, organize, or un-
derstand different methods that are described in customized ways.
Inspired by ideas from computer systems, symbolic AI, and human
cognition, I helped propose Cognitive Architectures for Language
Agents (CoALA) [23], a simple yet complete framework to express
each language agent by (i) the memory modules, (ii) the action
space (Fig. 5), and (iii) the decision-making procedure over ac-
tions. It helps concretely define terms (e.g., to learn is to write long-term memory), which in
turn points out various potential developments (e.g., learning by updating an agent’s code or
prompt). My research has also intersected with RL and control [22, 20, 27, 9, 4], computer
vision [18, 13], computational linguistics [21], multi-agent systems [25], and HCI [14]. These
interdisciplinary views and insights will be vital for pursuing the future directions below.

3

https://ysymyth.github.io

Research Statement Shunyu Yao

4. Ongoing and Future Directions

Training LLMs for agents. Most open-source LLMs perform poorly on agent tasks as
they were not trained to act, and proprietary models like GPT-4 are expensive to use and
lack transparency. My work has shown training LLMs how to reason and use tools leads to
a stronger generalization than either alone (Fig. 2). I am excited to work with NLP and
systems researchers to develop more effective and efficient open-source LLMs for agents, and
establish a reciprocating cycle where better LLMs enable exploration of agent design, and
strong agents in turn provide training data to shape LLMs. I also want to work with CV
and RL researchers to build agent backbones in multimodal and embodied setups, like a
general-purpose computer agent reading screen pixels and using the mouse and keyboard.

Robust and safe deployment. Language agents indicate great opportunities for task
automation, personal freedom, and social progress, but also enhanced potential harms like
deleting files or attacking servers. I believe it takes concrete and multidisciplinary efforts to
better understand and control these emerging systems, such as statistical and mathematical
characterization [21] of their capabilities and robustness, defining threat models and finding
defenses, and engaging ethics, law, and policy experts in capturing and shaping their societal
impact [19]. Across these efforts, it is important to have a holistic view of not just LLMs, but
how they are and will be used to interact with the world. CoALA [23] could help organize
and guide these efforts, e.g., we could analyze and control risks by defining the action space
of language agents (Fig. 5). Another important direction is automated coding [28, 8] (Fig. 4),
as agent-generated programs can act in more interpretable and reliable ways than agents.

Knowledge and scientific discovery. So far, the success of LLMs and language agents
relies mostly on imitating patterns of how humans write and act, thus happening mostly on
tasks that humans have already explored and summarized knowledge about. But to go
beyond imitation, we need to equip language agents with intrinsic rewards like curiosity [20],
means to planning [24] (Fig. 3) and reinforcement learning [12] using such intrinsic rewards,
and a long-term memory [23] to maintain experience, knowledge, and skills. I envision
agents that navigate gigantic networks of knowledge (e.g., via ArXiv APIs) to answer self-
asked questions, and learn by checking follow-up research via citations [15], interacting with
humans [14], or coding [28] (Fig. 4), similar to how Ph.D. students expand human knowledge.

Understanding and helping humans. My work has been inspired by human cogni-
tion [24, 23] to build autonomous agents that solve hard tasks with minimal guidance. But
to deploy language agents in our society, they will need to infer human intention, invoke and
incorporate human feedback, and collaborate with humans or other agents. I hope to engage
insights from pragmatics, game theory, social cognition, and HCI to understand how humans
perceive language agents [14], and how agents could in turn better model and interact with
humans. A particularly exciting domain is education, where I want to develop a tutor agent
with a long-term memory [23] of agent-student interaction histories and the student profile to
customize education for each student. Beyond teaching existing knowledge , I also envision
agents that communicate their discovered concepts (e.g., Move 37 of AlphaGo) to humans
by linking their “emergent languages” to human ones [25]. These will help ensure that AI
complements and augments human abilities, rather than surpassing or replacing them.

4

https://ysymyth.github.io

Research Statement Shunyu Yao

References
[1] Toktam B.Tabrizi, Ozgur Gocer, Arash Sadrieh, and Anastasia Globa. Leveraging ai to instruct

architecture students on circular design techniques and life cycle assessment. 9th International
Conference on Higher Education Advances (HEAd’23), 2023.

[2] Grace Colverd, Paul Darm, Leonard Silverberg, and Noah Kasmanoff. Floodbrain: Flood
disaster reporting by web-based retrieval augmented generation with an llm. ArXiv,
abs/2311.02597, 2023.

[3] Daocheng Fu, Xin Li, Licheng Wen, Min Dou, Pinlong Cai, Botian Shi, and Y. Qiao. Drive like
a human: Rethinking autonomous driving with large language models. ArXiv, abs/2307.07162,
2023.

[4] Yi Gu, Shunyu Yao, Chuang Gan, Joshua B Tenenbaum, and Mo Yu. Revisiting the roles
of” text” in text games. In EMNLP Findings, 2022.

[5] Pouya Hamadanian, Behnaz Arzani, Sadjad Fouladi, Siva Kesava Reddy Kakarla, Rodrigo
Fonseca, Denizcan Billor, Ahmad Cheema, Edet Nkposong, and Ranveer Chandra. A holistic
view of ai-driven network incident management. In ACM Workshop on Hot Topics in Networks,
2023.

[6] Abdelhadi Hireche, Abdelkader Nasreddine Belkacem, Sadia Jamil, and Chao Chen. Newsgpt:
Chatgpt integration for robot-reporter. ArXiv, abs/2311.06640, 2023.

[7] Fergus Imrie, Paulius Rauba, and Mihaela van der Schaar. Redefining digital health interfaces
with large language models. ArXiv, abs/2310.03560, 2023.

[8] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv
preprint arXiv:2310.06770, 2023.

[9] Yao Mu, Shunyu Yao, Mingyu Ding, Ping Luo, and Chuang Gan. EC2: Emergent commu-
nication for embodied control. In CVPR, 2023.

[10] Dorian Quelle and Alexandre Bovet. The perils & promises of fact-checking with large language
models. ArXiv, abs/2310.13549, 2023.

[11] Yisi Sang, Xiangyang Mou, Mo Yu, Shunyu Yao, Jing Li, and Jeffrey Stanton. Tvshowguess:
Character comprehension in stories as speaker guessing. In NAACL, 2022.

[12] Noah Shinn, Beck Cassano, Federico Labash, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning. In NeurIPS,
2023.

[13] Kevin Smith, Lingjie Mei, Shunyu Yao, Jiajun Wu, Elizabeth Spelke, Josh Tenenbaum, and
Tomer Ullman. Modeling expectation violation in intuitive physics with coarse probabilistic
object representations. In NeurIPS, 2019.

[14] Yuqian Sun, Xingyu Li, Ze Gao, Ze Gao, Shunyu Yao, Jun Peng, Noura Howell, Tristan
Braud, Chang Hee Lee, and Ali Asadipour. ORIBA: Supporting artistic development of
original characters with conversational ai agents. In Submission to CHI, 2023.

5

https://ysymyth.github.io

Research Statement Shunyu Yao

[15] Michael Tang, Shunyu Yao, John Yang, and Karthik Narasimhan. Referral augmentation
for zero-shot information retrieval. arXiv preprint arXiv:2305.15098, 2023.

[16] Shunyu Yao, Howard Chen, Austin W Hanjie, Runzhe Yang, and Karthik Narasimhan. Collie:
Systematic construction of constrained text generation tasks. arXiv preprint arXiv:2307.08689,
2023.

[17] Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. WebShop: Towards
scalable real-world web interaction with grounded language agents. In NeurIPS, 2022.

[18] Shunyu Yao, Tzu Ming Harry Hsu, Jun-Yan Zhu, Jiajun Wu, Antonio Torralba, William T
Freeman, and Joshua B Tenenbaum. 3d-aware scene manipulation via inverse graphics. In
NeurIPS, 2018.

[19] Shunyu Yao and Karthik Narasimhan. Language agents in the digital world: Opportunities
and risks. princeton-nlp.github.io, Jul 2023.

[20] Shunyu Yao, Karthik Narasimhan, and Matthew Hausknecht. Reading and acting while
blindfolded: The need for semantics in text game agents. In NAACL, 2021.

[21] Shunyu Yao, Binghui Peng, Christos Papadimitriou, and Karthik Narasimhan. Self-attention
networks can process bounded hierarchical languages. In ACL, 2021.

[22] Shunyu Yao, Rohan Rao, Matthew Hausknecht, and Karthik Narasimhan. Keep calm and
explore: Language models for action generation in text-based games. In EMNLP, 2020.

[23] Shunyu Yao, Theodore Sumers, Karthik Narasimhan, and Thomas L Griffiths. Cognitive
architectures for language agents. arXiv preprint arXiv:2309.02427, 2023.

[24] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and
Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language models.
In NeurIPS, 2023.

[25] Shunyu Yao, Mo Yu, Yang Zhang, Karthik R Narasimhan, Joshua B Tenenbaum, and Chuang
Gan. Linking emergent and natural languages via corpus transfer. In ICLR, 2022.

[26] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. ReAct: Synergizing reasoning and acting in language models. In ICLR, 2023.

[27] Jens Tuyls, Shunyu Yao, Sham Kakade, and Karthik Narasimhan. Multi-stage episodic
control for strategic exploration in text games. In ICLR, 2022.

[28] John Yang, Akshara Prabhakar, Karthik Narasimhan, and Shunyu Yao. Intercode: Stan-
dardizing and benchmarking interactive coding with execution feedback. In NeurIPS Datasets
and Benchmarks Track, 2023.

[29] Mo Yu, Jiangnan Li, Shunyu Yao, Wenjie Pang, Xiaochen Zhou, Zhou Xiao, Fandong Meng,
and Jie Zhou. Personality understanding of fictional characters during book reading. In ACL,
2023.

6

https://ysymyth.github.io

